Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 133(24): 244302, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21197988

ABSTRACT

Attachment of free, low-energy electrons to dinitrobenzene (DNB) in the gas phase leads to DNB(-) as well as several fragment anions. DNB(-), (DNB-H)(-), (DNB-NO)(-), (DNB-2NO)(-), and (DNB-NO(2))(-) are found to undergo metastable (unimolecular) dissociation. A rich pattern of resonances in the yield of these metastable reactions versus electron energy is observed; some resonances are highly isomer-specific. Most metastable reactions are accompanied by large average kinetic energy releases (KER) that range from 0.5 to 1.32 eV, typical of complex rearrangement reactions, but (1,3-DNB-H)(-) features a resonance with a KER of only 0.06 eV for loss of NO. (1,3-DNB-NO)(-) offers a rare example of a sequential metastable reaction, namely, loss of NO followed by loss of CO to yield C(5)H(4)O(-) with a large KER of 1.32 eV. The G4(MP2) method is applied to compute adiabatic electron affinities and reaction energies for several of the observed metastable channels.


Subject(s)
Dinitrobenzenes/chemistry , Electrons , Anions , Models, Molecular , Thermodynamics
2.
J Phys Chem A ; 114(3): 1474-84, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20039623

ABSTRACT

Results from a joint experimental study of electron attachment to dichlorodifluoromethane (CCl(2)F(2)) molecules in the gas phase are reported. In a high resolution electron beam experiment involving two versions of the laser photoelectron attachment method, the relative cross section for formation of the dominant anion Cl(-) was measured over the energy range 0.001-1.8 eV at the gas temperature T(G) = 300 K. It exhibits cusp structure at thresholds for vibrational excitation of the nu(3)(a(1)) mode due to interaction with the attachment channels. With reference to the thermal attachment rate coefficient k(T = 300 K) = 2.2(8) x 10(-9) cm(3) s(-1) (fitted average from several data), a new highly resolved absolute attachment cross section for T(G) = 300 K was determined. Partial cross sections for formation of the anions Cl(-), Cl(2)(-), F(-), ClF(-), and CCl(2)F(-) were measured over the range 0-12 eV, using three different electron beam experiments of medium energy resolution. The dependence of the attachment rate coefficient k(T(e);T(G) = 300 K) on electron temperature T(e) was calculated over the range 50-15 000 K, based on a newly constructed total cross section for anion formation at T(G) = 300 K. R-matrix calculations for Cl(-) production have been carried out for comparison with the experimental data. The R-matrix results are in line with the main experimental observations and predict the dependence of the DEA cross section on the initial vibrational level nu(3)() and on the vibrational temperature. Furthermore, the cross section for vibrational excitation of the nu(3) mode has been computed.

3.
J Chem Phys ; 128(10): 104304, 2008 Mar 14.
Article in English | MEDLINE | ID: mdl-18345885

ABSTRACT

Fragmentation of metastable SF(6)(-*) ions formed in low energy electron attachment to SF(6) has been investigated. The dissociation reaction SF(6)(-*)-->SF(5) (-)+F has been observed approximately 1.5-3.4 micros and approximately 17-32 micros after electron attachment in a time-of-flight and a double focusing two sector field mass spectrometer, respectively. Metastable dissociation is observed with maximum intensity at approximately 0.3 eV between the SF(6)(-*) peak at zero and the SF(5)(-) peak at approximately 0.4 eV. The kinetic energy released in dissociation is low, with a most probable value of 18 meV. The lifetime of SF(6)(-*) decreases as the electron energy increases, but it is not possible to fit this decrease with statistical Rice-Ramsperger-Kassel/quasiequilibrium theory. Metastable dissociation of SF(6)(-*) appears to compete with autodetachment of the electron at all electron energies.

4.
Phys Rev Lett ; 97(12): 123202, 2006 Sep 22.
Article in English | MEDLINE | ID: mdl-17025963

ABSTRACT

Experimental data are presented for the scattering of electrons by H2O between 17 and 250 meV impact energy. These results are used in conjunction with a generally applicable method, based on a quantum defect theory approach to electron-polar molecule collisions, to derive the first set of data for state-to-state rotationally inelastic scattering cross sections based on experimental values.

5.
J Chem Phys ; 122(7): 074301, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15743226

ABSTRACT

The scattering of electrons with kinetic energies down to a few meV by para-xylene and para-difluorobenzene has been observed experimentally with an electron beam energy resolution of 0.95 to 1.5 meV (full width half maximum). At low electron energies the collisions can be considered as cold scattering events because the de Broglie wavelength of the electron is considerably larger than the target dimensions. The scattering cross sections measured rise rapidly at low energy due to virtual state scattering. The nature of this scattering process is discussed using s- and p-wave phase shifts derived from the experimental data. Scattering lengths are derived of, respectively, -9.5+/-0.5 and -8.0+/-0.5 a.u. for para-xylene and para-difluorobenzene. The virtual state effect is interpreted in terms of nuclear diabatic and partially adiabatic models, involving the electronic and vibronic symmetries of the unoccupied orbitals in the target species. The concept of direct and indirect virtual state scattering is introduced, through which the present species, in common with carbon dioxide and benzene, scatter through an indirect virtual state process, whereas other species, such as perfluorobenzene, scatter through a direct process.

6.
Phys Rev Lett ; 89(9): 093201, 2002 Aug 26.
Article in English | MEDLINE | ID: mdl-12190397

ABSTRACT

Experimental data are presented for the scattering of cold electrons by CS2, for both integral and backward scattering, between a few meV and a few hundred meV impact energy. Giant resonances with cross sections in excess of 50 A(2) are observed below 100 meV, associated with the transient formation of CS(-)(2) at 15 meV and with the bend and symmetric stretch of CS(2) at thresholds of 49 and 82 meV, respectively. The resonance at 49 meV is 2 orders of magnitude greater in cross section than a dipole impulsive model predicts. These structures are superimposed on a sharp rise in the scattering cross section at low energy, which may be attributed to virtual state scattering.

SELECTION OF CITATIONS
SEARCH DETAIL
...