Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 12(1)2024 01 31.
Article in English | MEDLINE | ID: mdl-38296596

ABSTRACT

BACKGROUND: Despite immunization, patients on antineoplastic and immunomodulating agents have a heightened risk of COVID-19 infection. However, accurately attributing this risk to specific medications remains challenging. METHODS: An observational cohort study from December 11, 2020 to September 22, 2022, within a large healthcare system in San Diego, California, USA was designed to identify medications associated with greatest risk of postimmunization SARS-CoV-2 infection. Adults prescribed WHO Anatomical Therapeutic Chemical (ATC) classified antineoplastic and immunomodulating medications were matched (by age, sex, race, and number of immunizations) with control patients not prescribed these medications yielding a population of 26 724 patients for analysis. From this population, 218 blood samples were collected from an enrolled subset to assess serological response and cytokine profile in relation to immunization. RESULTS: Prescription of WHO ATC classified antineoplastic and immunomodulatory agents was associated with elevated postimmunization SARS-CoV-2 infection risk (HR 1.50, 95% CI 1.38 to 1.63). While multiple immunization doses demonstrated a decreased association with postimmunization SARS-CoV-2 infection risk, antineoplastic and immunomodulatory treated patients with four doses remained at heightened risk (HR 1.23, 95% CI 1.06 to 1.43). Risk variation was identified among medication subclasses, with PD-1/PD-L1 inhibiting monoclonal antibodies, calcineurin inhibitors, and CD20 monoclonal antibody inhibitors identified to associate with increased risk of postimmunization SARS-CoV-2 infection. Antineoplastic and immunomodulatory treated patients also displayed a reduced IgG antibody response to SARS-CoV-2 epitopes alongside a unique serum cytokine profile. CONCLUSIONS: Antineoplastic and immunomodulating medications associate with an elevated risk of postimmunization SARS-CoV-2 infection in a drug-specific manner. This comprehensive, unbiased analysis of all WHO ATC classified antineoplastic and immunomodulating medications identifies medications associated with greatest risk. These findings are crucial in guiding and refining vaccination strategies for patients prescribed these treatments, ensuring optimized protection for this susceptible population in future COVID-19 variant surges and potentially for other RNA immunization targets.


Subject(s)
Antineoplastic Agents , COVID-19 , Adult , Humans , SARS-CoV-2 , Immunomodulating Agents , Antibody Formation , Breakthrough Infections , Cytokines
2.
Med Decis Making ; 35(5): 648-59, 2015 07.
Article in English | MEDLINE | ID: mdl-25480757

ABSTRACT

The smallpox antiviral tecovirimat has recently been purchased by the U.S. Strategic National Stockpile. Given significant uncertainty regarding both the contagiousness of smallpox in a contemporary outbreak and the efficiency of a mass vaccination campaign, vaccine prophylaxis alone may be unable to control a smallpox outbreak following a bioterror attack. Here, we present the results of a compartmental epidemiological model that identifies conditions under which tecovirimat is required to curtail the epidemic by exploring how the interaction between contagiousness and prophylaxis coverage of the affected population affects the ability of the public health response to control a large-scale smallpox outbreak. Each parameter value in the model is based on published empirical data. We describe contagiousness parametrically using a novel method of distributing an assumed R-value over the disease course based on the relative rates of daily viral shedding from human and animal studies of cognate orthopoxvirus infections. Our results suggest that vaccination prophylaxis is sufficient to control the outbreak when caused either by a minimally contagious virus or when a very high percentage of the population receives prophylaxis. As vaccination coverage of the affected population decreases below 70%, vaccine prophylaxis alone is progressively less capable of controlling outbreaks, even those caused by a less contagious virus (R0 less than 4). In these scenarios, tecovirimat treatment is required to control the outbreak (total number of cases under an order of magnitude more than the number of initial infections). The first study to determine the relative importance of smallpox prophylaxis and treatment under a range of highly uncertain epidemiological parameters, this work provides public health decision-makers with an evidence-based guide for responding to a large-scale smallpox outbreak.


Subject(s)
Benzamides/therapeutic use , Immunity, Herd , Isoindoles/therapeutic use , Models, Biological , Smallpox , Benzamides/supply & distribution , Decision Making , Disease Outbreaks/prevention & control , Humans , Isoindoles/supply & distribution , New York City/epidemiology , Pre-Exposure Prophylaxis/methods , Smallpox/epidemiology , Smallpox/prevention & control , Smallpox Vaccine/supply & distribution , Smallpox Vaccine/therapeutic use , United States/epidemiology , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...