Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731951

ABSTRACT

Distal sensory polyneuropathy (DSP) and distal neuropathic pain (DNP) remain significant challenges for older people with HIV (PWH), necessitating enhanced clinical attention. HIV and certain antiretroviral therapies (ARTs) can compromise mitochondrial function and impact mitochondrial DNA (mtDNA) replication, which is linked to DSP in ART-treated PWH. This study investigated mtDNA, mitochondrial fission and fusion proteins, and mitochondrial electron transport chain protein changes in the dorsal root ganglions (DRGs) and sural nerves (SuNs) of 11 autopsied PWH. In antemortem standardized assessments, six had no or one sign of DSP, while five exhibited two or more DSP signs. Digital droplet polymerase chain reaction was used to measure mtDNA quantity and the common deletions in isolated DNA. We found lower mtDNA copy numbers in DSP+ donors. SuNs exhibited a higher proportion of mtDNA common deletion than DRGs in both groups. Mitochondrial electron transport chain (ETC) proteins were altered in the DRGs of DSP+ compared to DSP- donors, particularly Complex I. These findings suggest that reduced mtDNA quantity and increased common deletion abundance may contribute to DSP in PWH, indicating diminished mitochondrial activity in the sensory neurons. Accumulated ETC proteins in the DRG imply impaired mitochondrial transport to the sensory neuron's distal portion. Identifying molecules to safeguard mitochondrial integrity could aid in treating or preventing HIV-associated peripheral neuropathy.


Subject(s)
DNA, Mitochondrial , HIV Infections , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Male , HIV Infections/metabolism , HIV Infections/virology , HIV Infections/genetics , Pilot Projects , Female , Middle Aged , Aged , Ganglia, Spinal/metabolism , Ganglia, Spinal/virology , Mitochondria/metabolism , Mitochondria/genetics , Electron Transport Chain Complex Proteins/metabolism , Electron Transport Chain Complex Proteins/genetics , Peripheral Nerves/metabolism , Peripheral Nerves/virology , Peripheral Nerves/pathology , Adult , Sural Nerve/metabolism , Sural Nerve/pathology
2.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673830

ABSTRACT

Distal sensory polyneuropathy (DSP) is a disabling, chronic condition in people with HIV (PWH), even those with viral suppression of antiretroviral therapy (ART), and with a wide range of complications, such as reduced quality of life. Previous studies demonstrated that DSP is associated with inflammatory cytokines in PWH. Adhesion molecules, essential for normal vascular function, are perturbed in HIV and other conditions linked to DSP, but the link between adhesion molecules and DSP in PWH is unknown. This study aimed to determine whether DSP signs and symptoms were associated with a panel of plasma biomarkers of inflammation (d-dimer, sTNFRII, MCP-1, IL-6, IL-8, IP-10, sCD14) and vascular I integrity (ICAM-1, VCAM-1, uPAR, MMP-2, VEGF, uPAR, TIMP-1, TIMP-2) and differed between PWH and people without HIV (PWoH). A cross-sectional study was conducted among 143 participants (69 PWH and 74 PWoH) assessed by studies at the UC San Diego HIV Neurobehavioral Research Program. DSP signs and symptoms were clinically assessed for all participants. DSP was defined as two or more DSP signs: bilateral symmetrically reduced distal vibration, sharp sensation, and ankle reflexes. Participant-reported symptoms were neuropathic pain, paresthesias, and loss of sensation. Factor analyses reduced the dimensionality of the 15 biomarkers among all participants, yielding six factors. Logistic regression was used to assess the associations between biomarkers and DSP signs and symptoms, controlling for relevant demographic and clinical covariates. The 143 participants were 48.3% PWH, 47 (32.9%) women, and 47 (33.6%) Hispanics, with a mean age of 44.3 ± 12.9 years. Among PWH, the median (IQR) nadir and current CD4+ T-cells were 300 (178-448) and 643 (502-839), respectively. Participants with DSP were older but had similar distributions of gender and ethnicity to those without DSP. Multiple logistic regression showed that Factor 2 (sTNFRII and VCAM-1) and Factor 4 (MMP-2) were independently associated with DSP signs in both PWH and PWoH (OR [95% CI]: 5.45 [1.42-21.00], and 15.16 [1.07-215.22]), respectively. These findings suggest that inflammation and vascular integrity alterations may contribute to DSP pathogenesis in PWH, but not PWoH, possibly through endothelial dysfunction and axonal degeneration.


Subject(s)
Biomarkers , HIV Infections , Inflammation , Polyneuropathies , Humans , Female , Male , HIV Infections/complications , HIV Infections/blood , HIV Infections/drug therapy , Biomarkers/blood , Middle Aged , Adult , Inflammation/blood , Polyneuropathies/blood , Polyneuropathies/etiology , Cross-Sectional Studies , Cytokines/blood
4.
Brain Sci ; 13(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38002516

ABSTRACT

E-cigarette use has been marketed as a safer alternative to traditional cigarettes, as a means of smoking cessation, and are used at a higher rate than the general population in people with HIV (PWH). Early growth receptor 2 (EGR2) and Activity-Regulated Cytoskeleton-Associated Protein (ARC) have a role in addiction, synaptic plasticity, inflammation, and neurodegeneration. This study showed that 10 days of exposure to e-cigarette vapor altered gene expression in the brains of 6-month-old, male, Sprague Dawley rats. Specifically, the e-cigarette solvent vapor propylene glycol (PG) downregulated EGR2 and ARC mRNA expression in frontal cortex, an effect which was reversed by nicotine (NIC) and THC, suggesting that PG could have a protective role against NIC and cannabis dependence. However, in vitro, PG upregulated EGR2 and ARC mRNA expression at 18 h in cultured C6 rat astrocytes suggesting that PG may have neuroinflammatory effects. PG-induced upregulation of EGR2 and ARC mRNA was reversed by NIC but not THC. The HIV antiretroviral DTG reversed the effect NIC had on decreasing PG-induced upregulation of EGR2, which is concerning because EGR2 has been implicated in HIV latency reversal, T-cell apoptosis, and neuroinflammation, a process that underlies the development of HIV-associated neurocognitive disorders.

5.
J Neurovirol ; 29(5): 564-576, 2023 10.
Article in English | MEDLINE | ID: mdl-37801175

ABSTRACT

Central nervous system (CNS) dysfunction remains prevalent in people with HIV (PWH) despite effective antiretroviral therapy (ART). There is evidence that low-level HIV infection and ART drugs may contribute to CNS damage in the brain of PWH with suppressed viral loads. As cannabis is used at a higher rate in PWH compared to the general population, there is interest in understanding how HIV proteins and ART drugs interact with the endocannabinoid system (ECS) and inflammation in the CNS. Therefore, we investigated the effects of the HIV envelope protein gp120 and tenofovir alafenamide (TAF) on cannabinoid receptor 1 (CB1R), glial fibrillary acidic protein (GFAP), and IBA1 in the brain and on locomotor activity in mice. The gp120 transgenic (tg) mouse model was administered TAF daily for 30 days and then analyzed using the open field test before being euthanized, and their brains were analyzed for CB1R, GFAP, and IBA1 expression using immunohistochemical approaches. CB1R expression levels were significantly increased in CA1, CA2/3, and dentate gyrus of gp120tg mice compared to wt littermates; TAF reversed these effects. As expected, TAF showed a medium effect of enhancing GFAP in the frontal cortex of gp120tg mice in the frontal cortex. TAF had minimal effect on IBA1 signal. TAF showed medium to large effects on fine movements, rearing, total activity, total distance, and lateral activity in the open-field test. These findings suggest that TAF may reverse gp120-induced effects on CB1R expression and, unlike tenofovir disoproxil fumarate (TDF), may not affect gliosis in the brain.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Mice , Animals , HIV Infections/drug therapy , HIV Infections/genetics , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , HIV Envelope Protein gp120/genetics , Adenine/pharmacology , Mice, Transgenic , Hippocampus , Receptors, Cannabinoid/therapeutic use
6.
Nat Rev Neurol ; 19(11): 668-687, 2023 11.
Article in English | MEDLINE | ID: mdl-37816937

ABSTRACT

People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.


Subject(s)
Central Nervous System Diseases , Cognitive Dysfunction , HIV Infections , Humans , HIV Infections/complications , HIV Infections/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy
8.
Sci Rep ; 13(1): 3276, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36841839

ABSTRACT

The United Nations projects that one in every six people will be over the age of 65 by the year 2050. With a rapidly aging population, the risk of Alzheimer's disease (AD) becomes a major concern. AD is a multifactorial disease that involves neurodegeneration in the brain with mild dementia and deficits in memory and other cognitive domains. Additionally, it has been established that individuals with Human Immunodeficiency Virus-1 (HIV-1) experience a 5 to 10-year accelerated aging and an increased risk of developing HIV-associated neurocognitive disorders (HAND). Despite a significant amount of clinical evidence pointing towards a potential overlap between neuropathogenic processes in HAND and AD, the underlying epigenetic link between these two diseases is mostly unknown. This study is focused on identifying differentially expressed genes observed in both AD and HAND using linear regression models and a more robust significance analysis of microarray. The results established that the dysregulated type 1 and 2 interferon pathways observed in both AD and HAND contribute to the similar pathologies of these diseases within the brain. The current study identifies the important roles of interferon pathways in AD and HAND, a relationship that may be useful for earlier detection in the future.


Subject(s)
AIDS Dementia Complex , Alzheimer Disease , HIV Infections , HIV-1 , Humans , Aged , Alzheimer Disease/metabolism , AIDS Dementia Complex/pathology , HIV-1/metabolism , Interferons , Tetratricopeptide Repeat , Neurocognitive Disorders/pathology , HIV Infections/complications , Intracellular Signaling Peptides and Proteins/metabolism
10.
Front Aging Neurosci ; 14: 981937, 2022.
Article in English | MEDLINE | ID: mdl-36118688

ABSTRACT

People with HIV (PWH) continue to suffer from dysfunction of the central nervous system, as evidenced by HIV-associated neurocognitive disorder (HAND), despite antiretroviral therapy and suppressed viral loads. As PWH live longer they may also be at risk of age-related neurodegenerative diseases such Alzheimer's disease (AD) and its precursor, amnestic mild cognitive impairment (aMCI). The complement system is associated with deposition of AD-related proteins such as beta amyloid (Aß), neuroinflammation, and neurological dysfunction in PWH. Complement component 3 (C3) is a key protagonist in the complement cascade and complement factor H (CFH) is an antagonist of C3 activity. We investigated the relationship between C3 and CFH levels in the brain and Aß plaques and neurological dysfunction in 22 PWH. We analyzed by immunoblot C3 and CFH protein levels in frontal cortex (FC) and cerebellum (CB) brain specimens from PWH previously characterized for Aß plaque deposition. C3 and CFH protein levels were then correlated with specific cognitive domains. C3 protein levels in the FC were significantly increased in brains with Aß plaques and in brains with HAND compared to controls. In the CB, C3 levels trended higher in brains with Aß plaques. Overall C3 protein levels were significantly higher in the FC compared to the CB, but the opposite was true for CFH, having significantly higher levels of CFH protein in the CB compared to the FC. However, only CFH in the FC showed significant correlations with specific domains, executive function and motor performance. These findings corroborate previous results showing that complement system proteins are associated with HAND and AD neuropathogenesis.

11.
Brain Sci ; 12(3)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35326266

ABSTRACT

Therapeutic interventions are greatly needed for age-related neurodegenerative diseases. Astrocytes regulate many aspects of neuronal function including bioenergetics and synaptic transmission. Reactive astrocytes are implicated in neurodegenerative diseases due to their pro-inflammatory phenotype close association with damaged neurons. Thus, strategies to reduce astrocyte reactivity may support brain health. Caloric restriction and a ketogenic diet limit energy production via glycolysis and promote oxidative phosphorylation, which has gained traction as a strategy to improve brain health. However, it is unknown how caloric restriction affects astrocyte reactivity in the context of neuroinflammation. We investigated how a caloric restriction mimetic and glycolysis inhibitor, 2-deoxyglucose (2-DG), affects interleukin 1ß-induced inflammatory gene expression in human astrocytes. Human astrocyte cultures were exposed to 2-DG or vehicle for 24 h and then to recombinant IL-1ß for 6 or 24 h to analyze mRNA and protein expression, respectively. Gene expression levels of proinflammatory genes (complement component 3, IL-1ß, IL6, and TNFα) were analyzed by real-time PCR, immunoblot, and immunohistochemistry. As expected, IL-1ß induced elevated levels of proinflammatory genes. 2-DG reversed this effect at the mRNA and protein levels without inducing cytotoxicity. Collectively, these data suggest that inhibiting glycolysis in human astrocytes reduces IL-1ß-induced reactivity. This finding may lead to novel therapeutic strategies to limit inflammation and enhance bioenergetics toward the goal of preventing and treating neurodegenerative diseases.

12.
Cannabis Cannabinoid Res ; 7(1): 78-92, 2022 02.
Article in English | MEDLINE | ID: mdl-33998879

ABSTRACT

Background: Alterations of astrocyte function play a crucial role in neuroinflammatory diseases due to either the loss of their neuroprotective role or the gain of their toxic inflammatory properties. Accumulating evidence highlights that cannabinoids and cannabinoid receptor agonists, such as WIN55,212-2 (WIN), reduce inflammation in cellular and animal models. Thus, the endocannabinoid system has become an attractive target to attenuate chronic inflammation in neurodegenerative diseases. However, the mechanism of action of WIN in astrocytes remains poorly understood. Objective: We studied the immunosuppressive property of WIN by examining gene expression patterns that were modulated by WIN in reactive astrocytes. Materials and Methods: Transcriptomic analysis by RNA-seq was carried out using primary human astrocyte cultures stimulated by the proinflammatory cytokine interleukin 1 beta (IL1ß) in the presence or absence of WIN. Real-time quantitative polymerase chain reaction analysis was conducted on selected transcripts to characterize the dose-response effects of WIN, and to test the effect of selective antagonists of cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptors (PPAR). Results: Transcriptomic analysis showed that the IL1ß-induced inflammatory response is robustly inhibited by WIN pretreatment. WIN treatment alone also induced substantial gene expression changes. Pathway analysis revealed that the anti-inflammatory properties of WIN were linked to the regulation of kinase pathways and gene targets of neuroprotective transcription factors, including PPAR and SMAD (mothers against decapentaplegic homolog). The inhibitory effect of WIN was dose-dependent, but it was not affected by selective antagonists of CB1 or PPAR. Conclusions: This study suggests that targeting the endocannabinoid system may be a promising strategy to disrupt inflammatory pathways in reactive astrocytes. The anti-inflammatory activity of WIN is independent of CB1, suggesting that alternative receptors mediate the effects of WIN. These results provide mechanistic insights into the anti-inflammatory activity of WIN and highlight that astrocytes are a potential therapeutic target to ameliorate neuroinflammation in the brain.


Subject(s)
Astrocytes , Cannabinoid Receptor Agonists , Animals , Anti-Inflammatory Agents/metabolism , Benzoxazines , Cannabinoid Receptor Agonists/pharmacology , Endocannabinoids/pharmacology , Humans , Inflammation/drug therapy , Interleukin-1beta/metabolism , Morpholines , Naphthalenes , Peroxisome Proliferator-Activated Receptors/metabolism
14.
Viruses ; 13(9)2021 08 31.
Article in English | MEDLINE | ID: mdl-34578323

ABSTRACT

HIV-associated neurocognitive disorders (HAND) persist despite the advent of antiretroviral therapy (ART), suggesting underlying systemic and central nervous system (CNS) inflammatory mechanisms. The endogenous cannabinoid receptors 1 and 2 (CB1 and CB2) modulate inflammatory gene expression and play an important role in maintaining neuronal homeostasis. Cannabis use is disproportionately high among people with HIV (PWH) and may provide a neuroprotective effect for those on ART due to its anti-inflammatory properties. However, expression profiles of CB1 and CB2 in the brains of PWH on ART with HAND have not been reported. In this study, biochemical and immunohistochemical analyses were performed to determine CB1 and CB2 expression in the brain specimens of HAND donors. Immunoblot revealed that CB1 and CB2 were differentially expressed in the frontal cortices of HAND brains compared to neurocognitively unimpaired (NUI) brains of PWH. CB1 expression levels negatively correlated with memory and information processing speed. CB1 was primarily localized to neuronal soma in HAND brains versus a more punctate distribution of neuronal processes in NUI brains. CB1 expression was increased in cells with glial morphology and showed increased colocalization with an astroglial marker. These results suggest that targeting the endocannabinoid system may be a potential therapeutic strategy for HAND.


Subject(s)
Brain/metabolism , Endocannabinoids/pharmacology , HIV Infections/metabolism , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/therapy , Receptors, Cannabinoid/metabolism , Anti-Inflammatory Agents/pharmacology , Astrocytes , Central Nervous System , Endocannabinoids/therapeutic use , Humans , Immunohistochemistry , Neurocognitive Disorders/pathology , Neuroglia
15.
Front Neurol ; 12: 663373, 2021.
Article in English | MEDLINE | ID: mdl-34211430

ABSTRACT

HIV-associated distal sensory polyneuropathy (HIV-DSP) affects about one third of people with HIV and is characterized by distal degeneration of axons. The pathogenesis of HIV-DSP is not known and there is currently no FDA-approved treatment. HIV trans-activator of transcription (TAT) is associated with mitochondrial dysfunction and neurotoxicity in the brain and may play a role in the pathogenesis of HIV-DSP. In the present study, we measured indices of peripheral neuropathy in the doxycycline (DOX)-inducible HIV-TAT (iTAT) transgenic mouse and investigated the therapeutic efficacy of a selective muscarinic subtype-1 receptor (M1R) antagonist, pirenzepine (PZ). PZ was selected as we have previously shown that it prevents and/or reverses indices of peripheral neuropathy in multiple disease models. DOX alone induced weight loss, tactile allodynia and paw thermal hypoalgesia in normal C57Bl/6J mice. Conduction velocity of large motor fibers, density of small sensory nerve fibers in the cornea and expression of mitochondria-associated proteins in sciatic nerve were unaffected by DOX in normal mice, whereas these parameters were disrupted when DOX was given to iTAT mice to induce TAT expression. Daily injection of PZ (10 mg/kg s.c.) prevented all of the disorders associated with TAT expression. These studies demonstrate that TAT expression disrupts mitochondria and induces indices of sensory and motor peripheral neuropathy and that M1R antagonism may be a viable treatment for HIV-DSP. However, some indices of neuropathy in the DOX-inducible TAT transgenic mouse model can be ascribed to DOX treatment rather than TAT expression and data obtained from animal models in which gene expression is modified by DOX should be accompanied by appropriate controls and treated with due caution.

16.
J Neuroimmune Pharmacol ; 15(4): 743-764, 2020 12.
Article in English | MEDLINE | ID: mdl-32929575

ABSTRACT

HIV infection and drug use intersect epidemiologically, and their combination can result in complex effects on brain and behavior. The extent to which drugs affect the health of persons with HIV (PWH) depends on many factors including drug characteristics, use patterns, stage of HIV disease and its treatment, comorbid factors, and age. To consider the range of drug effects, we have selected two that are in common use by PWH: methamphetamine and cannabis. We compare the effects of methamphetamine with those of cannabis, to illustrate how substances may potentiate, worsen, or even buffer the effects of HIV on the CNS. Data from human, animal, and ex vivo studies provide insights into how these drugs have differing effects on the persistent inflammatory state that characterizes HIV infection, including effects on viral replication, immune activation, mitochondrial function, gut permeability, blood brain barrier integrity, glia and neuronal signaling. Moving forward, we consider how these mechanistic insights may inform interventions to improve brain outcomes in PWH. This review summarizes literature from clinical and preclinical studies demonstrating the adverse effects of METH, as well as the potentially beneficial effects of cannabis, on the interacting systemic (e.g., gut barrier leakage/microbial translocation, immune activation, inflammation) and CNS-specific (e.g., glial activation/neuroinflammation, neural injury, mitochondrial toxicity/oxidative stress) mechanisms underlying HIV-associated neurocognitive disorders.


Subject(s)
Blood-Brain Barrier/drug effects , Brain/drug effects , HIV Infections/drug therapy , Marijuana Use , Methamphetamine/adverse effects , Amphetamine-Related Disorders/epidemiology , Amphetamine-Related Disorders/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Cannabis , HIV Infections/epidemiology , HIV Infections/metabolism , Humans , Marijuana Use/epidemiology , Marijuana Use/metabolism , Neurocognitive Disorders/drug therapy , Neurocognitive Disorders/metabolism
17.
Brain Behav Immun ; 89: 184-199, 2020 10.
Article in English | MEDLINE | ID: mdl-32534984

ABSTRACT

People living with HIV (PLWH) continue to develop HIV-associated neurocognitive disorders despite combination anti-retroviral therapy. Lipocalin-2 (LCN2) is an acute phase protein that has been implicated in neurodegeneration and is upregulated in a transgenic mouse model of HIV-associated brain injury. Here we show that LCN2 is significantly upregulated in neocortex of a subset of HIV-infected individuals with brain pathology and correlates with viral load in CSF and pro-viral DNA in neocortex. However, the question if LCN2 contributes to HIV-associated neurotoxicity or is part of a protective host response required further investigation. We found that the knockout of LCN2 in transgenic mice expressing HIVgp120 in the brain (HIVgp120tg) abrogates behavioral impairment, ameliorates neuronal damage, and reduces microglial activation in association with an increase of the neuroprotective CCR5 ligand CCL4. In vitro experiments show that LCN2 neurotoxicity also depends on microglia and p38 MAPK activity. Genetic ablation of CCR5 in LCN2-deficient HIVgp120tg mice restores neuropathology, suggesting that LCN2 overrides neuroprotection mediated by CCR5 and its chemokine ligands. RNA expression of 168 genes involved in neurotransmission reveals that neuronal injury and protection are each associated with genotype- and sex-specific patterns affecting common neural gene networks. In conclusion, our study identifies LCN2 as a novel factor in HIV-associated brain injury involving CCR5, p38 MAPK and microglia. Furthermore, the mechanistic interaction between LCN2 and CCR5 may serve as a diagnostic and therapeutic target in HIV patients at risk of developing brain pathology and neurocognitive impairment.


Subject(s)
HIV Infections , HIV-1 , Acute-Phase Proteins/genetics , Animals , HIV Infections/complications , HIV-1/metabolism , Humans , Lipocalin-2/genetics , Mice , Neurons/metabolism , Receptors, CCR5/genetics
18.
J Neuroinflammation ; 17(1): 112, 2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32276639

ABSTRACT

BACKGROUND: HIV-associated neurocognitive disorders (HAND) persist in the era of combined antiretroviral therapy (ART) despite reductions in viral load (VL) and overall disease severity. The mechanisms underlying HAND in the ART era are not well understood but are likely multifactorial, involving alterations in common pathways such as inflammation, autophagy, neurogenesis, and mitochondrial function. Newly developed omics approaches hold potential to identify mechanisms driving neuropathogenesis of HIV in the ART era. METHODS: In this study, using 33 postmortem frontal cortex (FC) tissues, neuropathological, molecular, and biochemical analyses were used to determine cellular localization and validate expression levels of the prolific transcription factor (TF), CCAAT enhancer binding protein (C/EBP) ß, in brain tissues from HIV+ cognitively normal and HAND cases. RNA sequencing (seq) and transcriptomic analyses were performed on FC tissues including 24 specimens from well-characterized people with HIV that had undergone neurocognitive assessments. In vitro models for brain cells were used to investigate the role of C/EBPß in mediating gene expression. RESULTS: The most robust signal for TF dysregulation was observed in cases diagnosed with minor neurocognitive disorder (MND) compared to cognitive normal (CN) cases. Of particular interest, due to its role in inflammation, autophagy and neurogenesis, C/EBPß was significantly upregulated in MND compared to CN brains. C/EBPß was increased at the protein level in HAND brains. C/EBPß levels were significantly reduced in neurons and increased in astroglia in HAND brains compared to CN. Transfection of human astroglial cells with a plasmid expressing C/EBPß induced expression of multiple targets identified in the transcriptomic analysis of HAND brains, including dynamin-1-like protein (DNM1L) and interleukin-1 receptor-associated kinase 1. Recombinant HIV-Tat reduced and increased C/EBPß levels in neuronal and astroglial cells, respectively. CONCLUSIONS: These findings are the first to present RNAseq-based transcriptomic analyses of HIV+ brain tissues, providing further evidence of altered neuroinflammation, neurogenesis, mitochondrial function, and autophagy in HAND. Interestingly, these studies confirm a role for CEBPß in regulating inflammation, metabolism, and autophagy in astroglia. Therapeutic strategies aimed at transcriptional regulation of astroglia or downstream pathways may provide relief to HIV+ patients at risk for HAND and other neurological disorders.


Subject(s)
AIDS Dementia Complex/metabolism , Brain/metabolism , CCAAT-Enhancer-Binding Protein-beta/metabolism , Adult , Female , Gene Expression Profiling , Humans , Male
19.
AIDS ; 34(7): 1001-1007, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32073451

ABSTRACT

BACKGROUND: HIV-associated neurocognitive disorders (HAND) persist despite the widespread implementation of combined antiretroviral therapy (ART). As people with HIV (PWH) age on ART regimens, the risk of age-related comorbidities, such as Alzheimer's disease may increase. However, questions remain as to whether HIV or ART will alter such risks. Beta amyloid (Aß) and phosphorylated-tau (p-tau) proteins are associated with Alzheimer's disease and their levels are altered in the CSF of Alzheimer's disease cases. METHODS: To better understand how these Alzheimer's disease-related markers are affected by HIV infection and ART, postmortem CSF collected from 70 well characterized HIV+ decedents was analyzed for Aß1-42, Aß1-40, and p-tau levels. RESULTS: Aß1-42 and Aß1-40 CSF levels were higher in cases that were exposed to ART. Aß1-42 and Aß1-40 CSF levels were also higher in cases on protease inhibitors compared with those with no exposure to protease inhibitors. Aß1-42 and Aß1-40 levels in CSF were lowest in HIV+ cases with HIV-associated dementia (HAD) and levels were highest in those diagnosed with asymptomatic neurocognitive impairment (ANI) and minor neurocognitive disorder (MND). Aß1-42 and Aß1-40 were inversely related with p-tau levels in all cases, as previously reported. CONCLUSION: These data suggest that ART exposure is associated with increased levels of Aß1-42 and Aß1-40 in the CSF. Also, HAD, but not ANI/MND diagnosis is associated with decreased levels of Aß1-42 and Aß1-40 in CSF, potentially suggesting impaired clearance. These data suggest that HIV infection and ART may impact pathogenic mechanisms involving Aß1-42 and Aß1-40, but not p-tau.


Subject(s)
AIDS Dementia Complex/cerebrospinal fluid , AIDS Dementia Complex/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Antiretroviral Therapy, Highly Active/methods , HIV Infections/drug therapy , Peptide Fragments/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Dementia/cerebrospinal fluid , Dementia/diagnosis , HIV Infections/cerebrospinal fluid , HIV Infections/complications , Humans , tau Proteins/cerebrospinal fluid
20.
Sci Rep ; 9(1): 17158, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748578

ABSTRACT

Mounting evidence suggests that antiretroviral therapy (ART) drugs may contribute to the prevalence of HIV-associated neurological dysfunction. The HIV envelope glycoprotein (gp120) is neurotoxic and has been linked to alterations in mitochondrial function and increased inflammatory gene expression, which are common neuropathological findings in HIV+ cases on ART with neurological disorders. Tenofovir disproxil fumarate (TDF) has been shown to affect neurogenesis in brains of mice and mitochondria in neurons. In this study, we hypothesized that TDF contributes to neurotoxicity by modulating mitochondrial biogenesis and inflammatory pathways. TDF administered to wild-type (wt) and GFAP-gp120 transgenic (tg) mice caused peripheral neuropathy, as indicated by nerve conduction slowing and thermal hyperalgesia. Conversely TDF protected gp120-tg mice from cognitive dysfunction. In the brains of wt and gp120-tg mice, TDF decreased expression of mitochondrial transcription factor A (TFAM). However, double immunolabelling revealed that TFAM was reduced in neurons and increased in astroglia in the hippocampi of TDF-treated wt and gp120-tg mice. TDF also increased expression of GFAP and decreased expression of IBA1 in the wt and gp120-tg mice. TDF increased tumor necrosis factor (TNF) α in wt mice. However, TDF reduced interleukin (IL) 1ß and TNFα mRNA in gp120-tg mouse brains. Primary human astroglia were exposed to increasing doses of TDF for 24 hours and then analyzed for mitochondrial alterations and inflammatory gene expression. In astroglia, TDF caused a dose-dependent increase in oxygen consumption rate, extracellular acidification rate and spare respiratory capacity, changes consistent with increased metabolism. TDF also reduced IL-1ß-mediated increases in IL-1ß and TNFα mRNA. These data demonstrate that TDF causes peripheral neuropathy in mice and alterations in inflammatory signaling and mitochondrial activity in the brain.


Subject(s)
Anti-HIV Agents/adverse effects , Brain/drug effects , Inflammation/pathology , Mitochondria/drug effects , Peripheral Nervous System Diseases/chemically induced , Tenofovir/adverse effects , Animals , Brain/metabolism , Cell Line , Disease Models, Animal , Gene Expression/drug effects , Humans , Inflammation/metabolism , Mice , Mice, Transgenic , Mitochondria/metabolism , Neurons/drug effects , Neurons/metabolism , Organelle Biogenesis , Peripheral Nervous System Diseases/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...