Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 440: 138272, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38159318

ABSTRACT

Red cabbage (RC) represents a source of anthocyanins acylated with hydroxycinnamic acids (HCA) that are described to enhance their stability. Nevertheless, data about their thermal degradation are still controversial. Our aim was to comprehensively analyse the degradation kinetics of individual RC anthocyanins in a model aqueous extract treated at 40 °C × 30 days to simulate severe but realistic storage conditions. Free anthocyanins and radical-scavenging capacity showed different kinetics. The results confirm the high stability of RC anthocyanins (t1/2: 16.4-18.4 days), although HPLC analyses of each molecule displayed distinct kinetics with t1/2 from 12.6 to 35.1 days. In particular, the sinapoyl acylation negatively affected the stability of the anthocyanins, while the forms monoacylated with glycosyl p-coumaric and ferulic acids exhibited higher stability. In conclusion, our results indicate that acylation is not a prerogative of stability, as this is instead more dependent on specific acylation patterns and the glycosylation of HCA.


Subject(s)
Anthocyanins , Brassica , Anthocyanins/metabolism , Brassica/metabolism , Acylation , Chromatography, High Pressure Liquid/methods
2.
Antioxidants (Basel) ; 12(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37760059

ABSTRACT

Encapsulation is a valuable strategy to protect and deliver anthocyanins (ACNs), phenolic compounds with outstanding antioxidant capacity but limited stability. In this study, coacervation was used to encapsulate an ACN-rich red cabbage extract (RCE). Two agri-food by-product polymers, whey protein isolate (WPI) and apple high-methoxyl pectin (HMP), were blended at pH 4.0 in a specific ratio to induce the formation of nanoparticles (NPs). The process optimisation yielded a monodispersed population (PDI < 0.200) of negatively charged (-17 mV) NPs with an average diameter of 380 nm. RCE concentration influenced size, charge, and antioxidant capacity in a dose-dependent manner. NPs were also sensitive to pH increases from 4 to 7, showing a progressive breakdown. The encapsulation efficiency was 30%, with the retention of ACNs within the polymeric matrix being influenced by their chemical structure: diacylated and/or C3-triglucoside forms were more efficiently encapsulated than monoacylated C3-diglucosides. In conclusion, we report a promising, simple, and sustainable method to produce monodispersed NPs for ACN encapsulation and delivery. Evidence of differential binding of ACNs to NPs, dependent on specific acylation/glycosylation patterns, indicates that care must be taken in the choice of the appropriate NP formulation for the encapsulation of phenolic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...