Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 14(1): 2983, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37225693

ABSTRACT

PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of ß-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.


Subject(s)
Carcinogenesis , PTEN Phosphohydrolase , Animals , Humans , Male , Mice , Carcinogenesis/genetics , Homozygote , Mutation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , PTEN Phosphohydrolase/genetics , Phosphorylation
2.
Nat Commun ; 13(1): 3722, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35764649

ABSTRACT

Super-enhancers regulate genes with important functions in processes that are cell type-specific or define cell identity. Mouse embryonic fibroblasts establish 40 senescence-associated super-enhancers regardless of how they become senescent, with 50 activated genes located in the vicinity of these enhancers. Here we show, through gene knockdown and analysis of three core biological properties of senescent cells that a relatively large number of senescence-associated super-enhancer-regulated genes promote survival of senescent mouse embryonic fibroblasts. Of these, Mdm2, Rnase4, and Ang act by suppressing p53-mediated apoptosis through various mechanisms that are also engaged in response to DNA damage. MDM2 and RNASE4 transcription is also elevated in human senescent fibroblasts to restrain p53 and promote survival. These insights identify key survival mechanisms of senescent cells and provide molecular entry points for the development of targeted therapeutics that eliminate senescent cells at sites of pathology.


Subject(s)
Fibroblasts , Tumor Suppressor Protein p53 , Animals , Apoptosis/genetics , Cellular Senescence/genetics , DNA Damage , Fibroblasts/physiology , Mice , Tumor Suppressor Protein p53/genetics
3.
Gastroenterology ; 157(1): 210-226.e12, 2019 07.
Article in English | MEDLINE | ID: mdl-30878468

ABSTRACT

BACKGROUND & AIMS: The CCNE1 locus, which encodes cyclin E1, is amplified in many types of cancer cells and is activated in hepatocellular carcinomas (HCCs) from patients infected with hepatitis B virus or adeno-associated virus type 2, due to integration of the virus nearby. We investigated cell-cycle and oncogenic effects of cyclin E1 overexpression in tissues of mice. METHODS: We generated mice with doxycycline-inducible expression of Ccne1 (Ccne1T mice) and activated overexpression of cyclin E1 from age 3 weeks onward. At 14 months of age, livers were collected from mice that overexpress cyclin E1 and nontransgenic mice (controls) and analyzed for tumor burden and by histology. Mouse embryonic fibroblasts (MEFs) and hepatocytes from Ccne1T and control mice were analyzed to determine the extent to which cyclin E1 overexpression perturbs S-phase entry, DNA replication, and numbers and structures of chromosomes. Tissues from 4-month-old Ccne1T and control mice (at that age were free of tumors) were analyzed for chromosome alterations, to investigate the mechanisms by which cyclin E1 predisposes hepatocytes to transformation. RESULTS: Ccne1T mice developed more hepatocellular adenomas and HCCs than control mice. Tumors developed only in livers of Ccne1T mice, despite high levels of cyclin E1 in other tissues. Ccne1T MEFs had defects that promoted chromosome missegregation and aneuploidy, including incomplete replication of DNA, centrosome amplification, and formation of nonperpendicular mitotic spindles. Whereas Ccne1T mice accumulated near-diploid aneuploid cells in multiple tissues and organs, polyploidization was observed only in hepatocytes, with losses and gains of whole chromosomes, DNA damage, and oxidative stress. CONCLUSIONS: Livers, but not other tissues of mice with inducible overexpression of cyclin E1, develop tumors. More hepatocytes from the cyclin E1-overexpressing mice were polyploid than from control mice, and had losses or gains of whole chromosomes, DNA damage, and oxidative stress; all of these have been observed in human HCC cells. The increased risk of HCC in patients with hepatitis B virus or adeno-associated virus type 2 infection might involve activation of cyclin E1 and its effects on chromosomes and genomes of liver cells.


Subject(s)
Adenoma, Liver Cell/genetics , Carcinoma, Hepatocellular/genetics , Chromosomal Instability/genetics , Cyclin E/genetics , Liver Neoplasms/genetics , Liver/metabolism , Oncogene Proteins/genetics , Adenoma, Liver Cell/pathology , Adenoma, Liver Cell/virology , Animals , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Chromosome Structures , DNA Damage/genetics , DNA Replication , Dependovirus , Fibroblasts , Hepatitis B, Chronic , Hepatocytes , Liver/pathology , Liver Neoplasms/pathology , Liver Neoplasms/virology , Liver Neoplasms, Experimental/genetics , Liver Neoplasms, Experimental/pathology , Mice , Oxidative Stress/genetics , Parvoviridae Infections , Parvovirinae , Polyploidy , S Phase Cell Cycle Checkpoints
SELECTION OF CITATIONS
SEARCH DETAIL
...