Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 44(10): 3569-78, 2005 May 16.
Article in English | MEDLINE | ID: mdl-15877440

ABSTRACT

This study identifies the principles that govern the formation and stability of Ln complexes of the (alpha(1)-P(2)W(17)O(61))(10-) isomer. The conditional stability constants for the stepwise formation equilibria, K(1cond) and K(2cond), determined by (31)P NMR spectroscopy, show that the high log K(1cond)/log K(2cond) ratio predicts the stabilization of the 1:1 Ln/ (alpha(1)-P(2)W(17)O(61))(10-) species. The value of log K(1cond) increases as the Ln series is traversed, consistent with the high charge/size requirement of the basic alpha(1) defect site. The conditional stability constants, K(2), are very low and are highly dependent on the countercations in the buffer. The source of the instability is understood from the crystal structures of the early-mid lanthanide analogues, where the close contact of the (alpha(1)-P(2)W(17)O(61))(10-) units result in severe steric encumbrance. The electronic properties of the alpha(1) defect along with the lanthanide ionic radii and countercation composition are important parameters that need to be considered for a rational synthesis of lanthanide polyoxometalates.


Subject(s)
Lanthanoid Series Elements/chemistry , Crystallography, X-Ray , Lanthanoid Series Elements/chemical synthesis , Magnetic Resonance Spectroscopy , Molecular Conformation , Phosphorus Isotopes , Tungsten Compounds/chemical synthesis , Tungsten Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...