Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35630500

ABSTRACT

Cocultures have been widely explored for their use in deciphering microbial interaction and its impact on the metabolisms of the interacting microorganisms. In this work, we investigate, in different liquid coculture conditions, the compatibility of two microorganisms with the potential for the biocontrol of plant diseases: the fungus Trichoderma harzianum IHEM5437 and the bacterium Bacillus velezensis GA1 (a strong antifungal lipopeptide producing strain). While the Bacillus overgrew the Trichoderma in a rich medium due to its antifungal lipopeptide production, a drastically different trend was observed in a medium in which a nitrogen nutritional dependency was imposed. Indeed, in this minimum medium containing nitrate as the sole nitrogen source, cooperation between the bacterium and the fungus was established. This is reflected by the growth of both species as well as the inhibition of the expression of Bacillus genes encoding lipopeptide synthetases. Interestingly, the growth of the bacterium in the minimum medium was enabled by the amendment of the culture by the fungal supernatant, which, in this case, ensures a high production yield of lipopeptides. These results highlight, for the first time, that Trichoderma harzianum and Bacillus velezensis are able, in specific environmental conditions, to adapt their metabolisms in order to grow together.

2.
Microorganisms ; 7(7)2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31330825

ABSTRACT

Production of Cambodian rice wine involves complex microbial consortia. Indeed, previous studies focused on traditional microbial starters used for this product revealed that three microbial strains with complementary metabolic activities are required for an effective fermentation, i.e., filamentous fungi (Rhizopus oryzae), yeast (Saccharomyces cerevisiae), and lactic acid bacteria (Lactobacillus plantarum). Modulating the ratio between these three key players led to significant differences, not only in terms of ethanol and organic acid production, but also on the profile of volatile compounds, in comparison with natural communities. However, we observed that using an equal ratio of spores/cells of the three microbial strains during inoculation led to flavor profile and ethanol yield close to that obtained through the use of natural communities. Compartmentalization of metabolic tasks through the use of a biofilm cultivation device allows further improvement of the whole fermentation process, notably by increasing the amount of key components of the aroma profile of the fermented beverage (i.e., mainly phenylethyl alcohol, isobutyl alcohol, isoamyl alcohol, and 2-methyl-butanol) and reducing the amount of off-flavor compounds. This study is a step forward in our understanding of interkingdom microbial interactions with strong application potential in food biotechnology.

3.
FEMS Microbiol Lett ; 365(22)2018 11 01.
Article in English | MEDLINE | ID: mdl-30252036

ABSTRACT

Bioprocess deviations are likely to occur at different operating scales, leading in most of the case to substrate deviation from main metabolic routes and impact product synthesis. Correlating qS and qP is of utmost importance for bioprocess observability and control and can be modeled actually by advanced metabolic flux models. However, if most of these models are able to make prediction about metabolic switches, they still do not incorporate deviation due to biological noise, i.e. phenotypic and genotypic heterogeneity. These limitations impair observability and thus the use of fundamental knowledge about biological network for practical application, i.e. metabolic engineering or bioprocess scale-up.


Subject(s)
Biotechnology , Cells/metabolism , Metabolic Engineering , Synthetic Biology , Systems Biology , Genotype , Metabolic Flux Analysis , Models, Biological , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...