Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Histol Embryol ; 52(1): 73-84, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36148518

ABSTRACT

Undergraduate student engagement in research increases retention and degree completion, especially for students who are underrepresented in science. Several approaches have been adopted to increase research opportunities including curriculum based undergraduate research opportunities (CUREs), in which research is embedded into course content. Here we report on efforts to tackle a different challenge: providing research opportunities to students engaged in remote learning or who are learning at satellite campuses or community colleges with limited research infrastructure. In our project we engaged students learning remotely or at regional centers to map gene expression in the mouse brain. In this project we mapped expression of the Down syndrome cell adhesion molecule like 1 (Dscaml1) gene in mouse brain using a LacZ expression reporter line. Identifying where Dscaml1 is expressed in the brain is an important next step in determining if its roles in development and function in the retina are conserved in the rest of the brain. Students working remotely reconstruct brain montages and annotated Dscaml1 expression in the brain of mice carrying one or two copies of the gene trap. We built on these findings by further characterizing Dscaml1 expression in inhibitory neurons of the visual pathway. These results build on and extend previous findings and demonstrate the utility of including distance learners in an active research group for both the student learners and the research team. We conclude with best practices we have developed based on this and other distance learner focused projects.


Subject(s)
Neurons , Students , Animals , Mice , Humans , Lac Operon , Neurons/metabolism , Retina , Brain , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism
2.
J Comp Neurol ; 529(8): 1911-1925, 2021 06.
Article in English | MEDLINE | ID: mdl-33135176

ABSTRACT

The neural retina is organized along central-peripheral, dorsal-ventral, and laminar planes. Cellular density and distributions vary along the central-peripheral and dorsal-ventral axis in species including primates, mice, fish, and birds. Differential distribution of cell types within the retina is associated with sensitivity to different types of damage that underpin major retinal diseases, including macular degeneration and glaucoma. Normal variation in retinal distribution remains unreported for multiple cell types in widely used research models, including mouse. Here we map the distribution of all known OFF bipolar cell (BC) populations and horizontal cells. We report significant variation in the distribution of OFF BC populations and horizontal cells along the dorsal-ventral and central-peripheral axes of the retina. Distribution patterns are much more pronounced for some populations of OFF BC cells than others and may correspond to the cell type's specialized functions.


Subject(s)
Retinal Bipolar Cells/cytology , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...