Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Neuromuscul Dis ; 10(6): 1127-1141, 2023.
Article in English | MEDLINE | ID: mdl-37638449

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with genetic and phenotypic heterogeneity. Pathogenic genetic variants remain the only validated cause of disease, the majority of which were discovered in familial ALS patients. While causal gene variants are a lesser contributor to sporadic ALS, an increasing number of risk alleles (low penetrance genetic variants associated with a small increase in disease risk) and variants of uncertain significance have been reported. OBJECTIVE: To examine the pathogenic potential of genetic variation in ALS, we sought to characterise variant- and gene-level attributes of previously reported ALS-implicated variants. METHODS: A list of 1,087 genetic variants reported in ALS to March 2021 was compiled through comprehensive literature review. Individual variants were annotated using in silico tools and databases across variant features including pathogenicity scores, localisation to protein domains, evolutionary conservation, and minor allele frequencies. Gene level attributes of genic tolerance, gene expression in ALS-relevant tissues and gene ontology terms were assessed for 33 ALS genes. Statistical analysis was performed for each characteristic, and we compared the most penetrant variants found in familial cases with risk alleles exclusive to sporadic cases, to explore genetic variant features that associate with disease penetrance. RESULTS: We provide spreadsheet (hg19 and GRCh38) and variant call format (GRCh38) resources for all 1,087 reported ALS-implicated variants, including detailed summaries for each attribute. We demonstrate that the characteristics of variants found exclusively in sporadic ALS cases are less severe than those observed in familial ALS. CONCLUSIONS: We provide a comprehensive, literature-derived catalogue of genetic variation in ALS thus far and reveal crucial attributes that contribute to ALS pathogenicity. Our variant- and gene-level observations highlight the complexity of genetic variation in ALS, and we discuss important implications and considerations for novel variant interpretation.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/genetics , Gene Frequency
2.
Article in English | MEDLINE | ID: mdl-36896705

ABSTRACT

Objective: In 2021, the Clinical Genome Resource (ClinGen) amyotrophic lateral sclerosis (ALS) spectrum disorders Gene Curation Expert Panel (GCEP) was established to evaluate the strength of evidence for genes previously reported to be associated with ALS. Through this endeavor, we will provide standardized guidance to laboratories on which genes should be included in clinical genetic testing panels for ALS. In this manuscript, we aimed to assess the heterogeneity in the current global landscape of clinical genetic testing for ALS. Methods: We reviewed the National Institutes of Health (NIH) Genetic Testing Registry (GTR) and members of the ALS GCEP to source frequently used testing panels and compare the genes included on the tests. Results: 14 clinical panels specific to ALS from 14 laboratories covered 4 to 54 genes. All panels report on ANG, SOD1, TARDBP, and VAPB; 50% included or offered the option of including C9orf72 hexanucleotide repeat expansion (HRE) analysis. Of the 91 genes included in at least one of the panels, 40 (44.0%) were included on only a single panel. We could not find a direct link to ALS in the literature for 14 (15.4%) included genes. Conclusions: The variability across the surveyed clinical genetic panels is concerning due to the possibility of reduced diagnostic yields in clinical practice and risk of a missed diagnoses for patients. Our results highlight the necessity for consensus regarding the appropriateness of gene inclusions in clinical genetic ALS tests to improve its application for patients living with ALS and their families.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Mutation , Genetic Testing/methods , C9orf72 Protein/genetics
3.
Acta Neuropathol Commun ; 10(1): 122, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008843

ABSTRACT

Multiple neurotoxic proteinopathies co-exist within vulnerable neuronal populations in all major neurodegenerative diseases. Interactions between these pathologies may modulate disease progression, suggesting they may constitute targets for disease-modifying treatments aiming to slow or halt neurodegeneration. Pairwise interactions between superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43) and ubiquitin-binding protein 62/sequestosome 1 (p62) proteinopathies have been reported in multiple transgenic cellular and animal models of amyotrophic lateral sclerosis (ALS), however corresponding examination of these relationships in patient tissues is lacking. Further, the coalescence of all three proteinopathies has not been studied in vitro or in vivo to date. These data are essential to guide therapeutic development and enhance the translation of relevant therapies into the clinic. Our group recently profiled SOD1 proteinopathy in post-mortem spinal cord tissues from familial and sporadic ALS cases, demonstrating an abundance of structurally-disordered (dis)SOD1 conformers which become mislocalized within these vulnerable neurons compared with those of aged controls. To explore any relationships between this, and other, ALS-linked proteinopathies, we profiled TDP-43 and p62 within spinal cord motor neurons of the same post-mortem tissue cohort using multiplexed immunofluorescence and immunohistochemistry. We identified distinct patterns of SOD1, TDP43 and p62 co-deposition and subcellular mislocalization between motor neurons of familial and sporadic ALS cases, which we primarily attribute to SOD1 gene status. Our data demonstrate co-deposition of p62 with mutant and wild-type disSOD1 and phosphorylated TDP-43 in familial and sporadic ALS spinal cord motor neurons, consistent with attempts by p62 to mitigate SOD1 and TDP-43 deposition. Wild-type SOD1 and TDP-43 co-deposition was also frequently observed in ALS cases lacking SOD1 mutations. Finally, alterations to the subcellular localization of the three proteins were tightly correlated, suggesting close relationships between the regulatory mechanisms governing the subcellular compartmentalization of these proteins. Our study is the first to profile spatial relationships between SOD1, TDP-43 and p62 pathologies in post-mortem spinal cord motor neurons of ALS patients, previously only studied in vitro. Our findings suggest interactions between these three key ALS-linked proteins are likely to modulate the formation of their respective proteinopathies, and perhaps the rate of motor neuron degeneration, in ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis , Amyotrophic Lateral Sclerosis/pathology , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Motor Neurons/metabolism , Spinal Cord/pathology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
4.
Brain ; 145(9): 3108-3130, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35512359

ABSTRACT

Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro and in transgenic animal models of amyotrophic lateral sclerosis. Detailed examination of the protein in disease-affected tissues from amyotrophic lateral sclerosis patients, however, remains scarce. We used histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from amyotrophic lateral sclerosis cases and controls. Tissues were dissected into ventral and dorsal spinal cord grey matter to assess the specificity of alterations within regions of motor neuron degeneration. We provide evidence of the mislocalization and accumulation of structurally disordered, immature SOD1 protein conformers in spinal cord motor neurons of SOD1-linked and non-SOD1-linked familial amyotrophic lateral sclerosis cases, and sporadic amyotrophic lateral sclerosis cases, compared with control motor neurons. These changes were collectively associated with instability and mismetallation of enzymatically active SOD1 dimers, as well as alterations to SOD1 post-translational modifications and molecular chaperones governing SOD1 maturation. Atypical changes to SOD1 protein were largely restricted to regions of neurodegeneration in amyotrophic lateral sclerosis cases, and clearly differentiated all forms of amyotrophic lateral sclerosis from controls. Substantial heterogeneity in the presence of these changes was also observed between amyotrophic lateral sclerosis cases. Our data demonstrate that varying forms of SOD1 proteinopathy are a common feature of all forms of amyotrophic lateral sclerosis, and support the presence of one or more convergent biochemical pathways leading to SOD1 proteinopathy in amyotrophic lateral sclerosis. Most of these alterations are specific to regions of neurodegeneration, and may therefore constitute valid targets for therapeutic development.


Subject(s)
Amyotrophic Lateral Sclerosis , Protein Processing, Post-Translational , Superoxide Dismutase-1 , Amyotrophic Lateral Sclerosis/genetics , Humans , Mutation , Spinal Cord/pathology , Superoxide Dismutase-1/genetics
5.
Neuropathol Appl Neurobiol ; 47(7): 990-1003, 2021 12.
Article in English | MEDLINE | ID: mdl-34288034

ABSTRACT

AIM: Splicing factor proline and glutamine rich (SFPQ) is an RNA-DNA binding protein that is dysregulated in Alzheimer's disease and frontotemporal dementia. Dysregulation of SFPQ, specifically increased intron retention and nuclear depletion, has been linked to several genetic subtypes of amyotrophic lateral sclerosis (ALS), suggesting that SFPQ pathology may be a common feature of this heterogeneous disease. Our study aimed to investigate this hypothesis by providing the first comprehensive assessment of SFPQ pathology in large ALS case-control cohorts. METHODS: We examined SFPQ at the RNA, protein and DNA levels. SFPQ RNA expression and intron retention were examined using RNA-sequencing and quantitative PCR. SFPQ protein expression was assessed by immunoblotting and immunofluorescent staining. At the DNA level, SFPQ was examined for genetic variation novel to ALS patients. RESULTS: At the RNA level, retention of SFPQ intron nine was significantly increased in ALS patients' motor cortex. In addition, SFPQ RNA expression was significantly reduced in the central nervous system, but not blood, of patients. At the protein level, neither nuclear depletion nor reduced expression of SFPQ was found to be a consistent feature of spinal motor neurons. However, SFPQ-positive ubiquitinated protein aggregates were observed in patients' spinal motor neurons. At the DNA level, our genetic screen identified two novel and two rare SFPQ sequence variants not previously reported in the literature. CONCLUSIONS: Our findings confirm dysregulation of SFPQ as a pathological feature of the central nervous system of ALS patients and indicate that investigation of the functional consequences of this pathology will provide insight into ALS biology.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Glutamine/metabolism , Motor Neurons/pathology , Frontotemporal Dementia/genetics , Glutamine/genetics , Humans , Introns/physiology , Proline/genetics , Proline/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism
6.
Front Immunol ; 12: 701550, 2021.
Article in English | MEDLINE | ID: mdl-34194442

ABSTRACT

The essential amino acid tryptophan (TRP) is the initiating metabolite of the kynurenine pathway (KP), which can be upregulated by inflammatory conditions in cells. Neuroinflammation-triggered activation of the KP and excessive production of the KP metabolite quinolinic acid are common features of multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In addition to its role in the KP, genes involved in TRP metabolism, including its incorporation into proteins, and synthesis of the neurotransmitter serotonin, have also been genetically and functionally linked to these diseases. ALS is a late onset neurodegenerative disease that is classified as familial or sporadic, depending on the presence or absence of a family history of the disease. Heritability estimates support a genetic basis for all ALS, including the sporadic form of the disease. However, the genetic basis of sporadic ALS (SALS) is complex, with the presence of multiple gene variants acting to increase disease susceptibility and is further complicated by interaction with potential environmental factors. We aimed to determine the genetic contribution of 18 genes involved in TRP metabolism, including protein synthesis, serotonin synthesis and the KP, by interrogating whole-genome sequencing data from 614 Australian sporadic ALS cases. Five genes in the KP (AFMID, CCBL1, GOT2, KYNU, HAAO) were found to have either novel protein-altering variants, and/or a burden of rare protein-altering variants in SALS cases compared to controls. Four genes involved in TRP metabolism for protein synthesis (WARS) and serotonin synthesis (TPH1, TPH2, MAOA) were also found to carry novel variants and/or gene burden. These variants may represent ALS risk factors that act to alter the KP and lead to neuroinflammation. These findings provide further evidence for the role of TRP metabolism, the KP and neuroinflammation in ALS disease pathobiology.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Genetic Predisposition to Disease/genetics , Tryptophan/metabolism , Humans , Whole Genome Sequencing
7.
Front Mol Neurosci ; 14: 627740, 2021.
Article in English | MEDLINE | ID: mdl-33986643

ABSTRACT

The past decade has seen a rapid acceleration in the discovery of new genetic causes of ALS, with more than 20 putative ALS-causing genes now cited. These genes encode proteins that cover a diverse range of molecular functions, including free radical scavenging (e.g., SOD1), regulation of RNA homeostasis (e.g., TDP-43 and FUS), and protein degradation through the ubiquitin-proteasome system (e.g., ubiquilin-2 and cyclin F) and autophagy (TBK1 and sequestosome-1/p62). It is likely that the various initial triggers of disease (either genetic, environmental and/or gene-environment interaction) must converge upon a common set of molecular pathways that underlie ALS pathogenesis. Given the complexity, it is not surprising that a catalog of molecular pathways and proteostasis dysfunctions have been linked to ALS. One of the challenges in ALS research is determining, at the early stage of discovery, whether a new gene mutation is indeed disease-specific, and if it is linked to signaling pathways that trigger neuronal cell death. We have established a proof-of-concept proteogenomic workflow to assess new gene mutations, using CCNF (cyclin F) as an example, in cell culture models to screen whether potential gene candidates fit the criteria of activating apoptosis. This can provide an informative and time-efficient output that can be extended further for validation in a variety of in vitro and in vivo models and/or for mechanistic studies. As a proof-of-concept, we expressed cyclin F mutations (K97R, S195R, S509P, R574Q, S621G) in HEK293 cells for label-free quantitative proteomics that bioinformatically predicted activation of the neuronal cell death pathways, which was validated by immunoblot analysis. Proteomic analysis of induced pluripotent stem cells (iPSCs) derived from patient fibroblasts bearing the S621G mutation showed the same activation of these pathways providing compelling evidence for these candidate gene mutations to be strong candidates for further validation and mechanistic studies (such as E3 enzymatic activity assays, protein-protein and protein-substrate studies, and neuronal apoptosis and aberrant branching measurements in zebrafish). Our proteogenomics approach has great utility and provides a relatively high-throughput screening platform to explore candidate gene mutations for their propensity to cause neuronal cell death, which will guide a researcher for further experimental studies.

8.
Neurobiol Aging ; 101: 297.e9-297.e11, 2021 05.
Article in English | MEDLINE | ID: mdl-33581934

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease caused by the progressive degeneration of motor neurons. Recently, genetic variants in GLT8D1 and ARPP21 were associated with ALS in a cohort of European descent. A synergistic relationship was proposed between ALS associated variants in GLT8D1 and ARPP21. We aimed to determine the prevalence of genetic variation in GLT8D1 and ARPP21 in an Australian cohort of familial (n = 81) and sporadic ALS (n = 618) cases using whole-exome and whole-genome sequencing data. No novel mutations were identified in either gene, nor was there significant enrichment of protein-altering sequence variation among ALS cases. GLT8D1 and ARPP21 mutations are not a common cause of ALS in Australian familial and sporadic cohorts.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Genetic Variation/genetics , Genome-Wide Association Study/methods , Glycosyltransferases/genetics , Negative Results , Phosphoproteins/genetics , Australia , Cohort Studies , Female , Humans , Male , White People/genetics , Exome Sequencing , Whole Genome Sequencing
9.
Cells ; 9(9)2020 09 02.
Article in English | MEDLINE | ID: mdl-32887382

ABSTRACT

The study of neurodegenerative diseases using pluripotent stem cells requires new methods to assess neurodevelopment and neurodegeneration of specific neuronal subtypes. The cholinergic system, characterized by its use of the neurotransmitter acetylcholine, is one of the first to degenerate in Alzheimer's disease and is also affected in frontotemporal dementia. We developed a differentiation protocol to generate basal forebrain-like cholinergic neurons (BFCNs) from induced pluripotent stem cells (iPSCs) aided by the use of small molecule inhibitors and growth factors. Ten iPSC lines were successfully differentiated into BFCNs using this protocol. The neuronal cultures were characterised through RNA and protein expression, and functional analysis of neurons was confirmed by whole-cell patch clamp. We have developed a reliable protocol using only small molecule inhibitors and growth factors, while avoiding transfection or cell sorting methods, to achieve a BFCN culture that expresses the characteristic markers of cholinergic neurons.


Subject(s)
Cell Differentiation/drug effects , Cholinergic Neurons/drug effects , Culture Media/pharmacology , Embryoid Bodies/drug effects , Induced Pluripotent Stem Cells/drug effects , Primary Cell Culture/methods , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Basal Forebrain/metabolism , Basal Forebrain/pathology , Benzamides/pharmacology , Brain-Derived Neurotrophic Factor/pharmacology , Cell Line , Cholinergic Neurons/cytology , Cholinergic Neurons/metabolism , Culture Media/chemistry , Dioxoles/pharmacology , Embryoid Bodies/cytology , Embryoid Bodies/metabolism , Female , Fibroblast Growth Factor 2/pharmacology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Growth Differentiation Factor 2/pharmacology , Hedgehog Proteins/pharmacology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Male , Models, Biological , Nerve Growth Factor/pharmacology , Patch-Clamp Techniques , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Transforming Growth Factor beta/pharmacology
10.
J Med Genet ; 2020 May 14.
Article in English | MEDLINE | ID: mdl-32409511

ABSTRACT

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with phenotypic and genetic heterogeneity. Approximately 10% of cases are familial, while remaining cases are classified as sporadic. To date, >30 genes and several hundred genetic variants have been implicated in ALS. METHODS: Seven hundred and fifty-seven sporadic ALS cases were recruited from Australian neurology clinics. Detailed clinical data and whole genome sequencing (WGS) data were available from 567 and 616 cases, respectively, of which 426 cases had both datasets available. As part of a comprehensive genetic analysis, 853 genetic variants previously reported as ALS-linked mutations or disease-associated alleles were interrogated in sporadic ALS WGS data. Statistical analyses were performed to identify correlation between clinical variables, and between phenotype and the number of ALS-implicated variants carried by an individual. Relatedness between individuals carrying identical variants was assessed using identity-by-descent analysis. RESULTS: Forty-three ALS-implicated variants from 18 genes, including C9orf72, ATXN2, TARDBP, SOD1, SQSTM1 and SETX, were identified in Australian sporadic ALS cases. One-third of cases carried at least one variant and 6.82% carried two or more variants, implicating a potential oligogenic or polygenic basis of ALS. Relatedness was detected between two sporadic ALS cases carrying a SOD1 p.I114T mutation, and among three cases carrying a SQSTM1 p.K238E mutation. Oligogenic/polygenic sporadic ALS cases showed earlier age of onset than those with no reported variant. CONCLUSION: We confirm phenotypic associations among ALS cases, and highlight the contribution of genetic variation to all forms of ALS.

11.
Brain ; 143(3): 783-799, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32185393

ABSTRACT

Frontotemporal dementia and amyotrophic lateral sclerosis are clinically and pathologically overlapping disorders with shared genetic causes. We previously identified a disease locus on chromosome 16p12.1-q12.2 with genome-wide significant linkage in a large European Australian family with autosomal dominant inheritance of frontotemporal dementia and amyotrophic lateral sclerosis and no mutation in known amyotrophic lateral sclerosis or dementia genes. Here we demonstrate the segregation of a novel missense variant in CYLD (c.2155A>G, p.M719V) within the linkage region as the genetic cause of disease in this family. Immunohistochemical analysis of brain tissue from two CYLD p.M719V mutation carriers showed widespread glial CYLD immunoreactivity. Primary mouse neurons transfected with CYLDM719V exhibited increased cytoplasmic localization of TDP-43 and shortened axons. CYLD encodes a lysine 63 deubiquitinase and CYLD cutaneous syndrome, a skin tumour disorder, is caused by mutations that lead to reduced deubiquitinase activity. In contrast with CYLD cutaneous syndrome-causative mutations, CYLDM719V exhibited significantly increased lysine 63 deubiquitinase activity relative to the wild-type enzyme (paired Wilcoxon signed-rank test P = 0.005). Overexpression of CYLDM719V in HEK293 cells led to more potent inhibition of the cell signalling molecule NF-κB and impairment of autophagosome fusion to lysosomes, a key process in autophagy. Although CYLD mutations appear to be rare, CYLD's interaction with at least three other proteins encoded by frontotemporal dementia and/or amyotrophic lateral sclerosis genes (TBK1, OPTN and SQSTM1) suggests that it may play a central role in the pathogenesis of these disorders. Mutations in several frontotemporal dementia and amyotrophic lateral sclerosis genes, including TBK1, OPTN and SQSTM1, result in a loss of autophagy function. We show here that increased CYLD activity also reduces autophagy function, highlighting the importance of autophagy regulation in the pathogenesis of frontotemporal dementia and amyotrophic lateral sclerosis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Deubiquitinating Enzyme CYLD/genetics , Deubiquitinating Enzyme CYLD/physiology , Frontotemporal Dementia/genetics , Genetic Predisposition to Disease/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Autophagosomes/metabolism , Autophagosomes/physiology , Axons/pathology , Brain/metabolism , DNA-Binding Proteins , Deubiquitinating Enzyme CYLD/metabolism , Deubiquitinating Enzymes/metabolism , Frontotemporal Dementia/metabolism , Mice , Mutation, Missense/genetics , NF-kappa B/antagonists & inhibitors , Primary Cell Culture , Transfection
12.
J Neurol Neurosurg Psychiatry ; 91(2): 162-171, 2020 02.
Article in English | MEDLINE | ID: mdl-31690696

ABSTRACT

OBJECTIVE: Since the first report of CHCHD10 gene mutations in amyotrophiclateral sclerosis (ALS)/frontotemporaldementia (FTD) patients, genetic variation in CHCHD10 has been inconsistently linked to disease. A pathological assessment of the CHCHD10 protein in patient neuronal tissue also remains to be reported. We sought to characterise the genetic and pathological contribution of CHCHD10 to ALS/FTD in Australia. METHODS: Whole-exome and whole-genome sequencing data from 81 familial and 635 sporadic ALS, and 108 sporadic FTD cases, were assessed for genetic variation in CHCHD10. CHCHD10 protein expression was characterised by immunohistochemistry, immunofluorescence and western blotting in control, ALS and/or FTD postmortem tissues and further in a transgenic mouse model of TAR DNA-binding protein 43 (TDP-43) pathology. RESULTS: No causal, novel or disease-associated variants in CHCHD10 were identified in Australian ALS and/or FTD patients. In human brain and spinal cord tissues, CHCHD10 was specifically expressed in neurons. A significant decrease in CHCHD10 protein level was observed in ALS patient spinal cord and FTD patient frontal cortex. In a TDP-43 mouse model with a regulatable nuclear localisation signal (rNLS TDP-43 mouse), CHCHD10 protein levels were unaltered at disease onset and early in disease, but were significantly decreased in cortex in mid-stage disease. CONCLUSIONS: Genetic variation in CHCHD10 is not a common cause of ALS/FTD in Australia. However, we showed that in humans, CHCHD10 may play a neuron-specific role and a loss of CHCHD10 function may be linked to ALS and/or FTD. Our data from the rNLS TDP-43 transgenic mice suggest that a decrease in CHCHD10 levels is a late event in aberrant TDP-43-induced ALS/FTD pathogenesis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Mitochondrial Proteins/genetics , Aged , Amyotrophic Lateral Sclerosis/immunology , Amyotrophic Lateral Sclerosis/pathology , Animals , Australia , Blotting, Western , Brain/pathology , Female , Fluorescent Antibody Technique , Frontotemporal Dementia/immunology , Frontotemporal Dementia/pathology , Genetic Variation/genetics , Humans , Male , Mice , Mice, Transgenic , Middle Aged , Motor Cortex/pathology , Spinal Cord/pathology , Exome Sequencing , Whole Genome Sequencing
13.
Article in English | MEDLINE | ID: mdl-31702460

ABSTRACT

Background: Ongoing disease gene discoveries continue to drive our understanding of the molecular and cellular mechanisms underlying ALS. Causative genes from 60% of ALS families have been identified using modern genetic techniques, but the causal gene defect is yet to be identified in the remaining 40% of families. These remaining families often do not follow true Mendelian inheritance patterns and are challenging to solve using traditional genetic analysis alone. In vitro and in vivo studies have become critical in assessing and validating these ALS candidate genes.Objectives: In this study, we aim to develop and validate the utility of an in vitro functional pipeline for the discovery and validation of novel ALS candidate genes.Methods: A panel of cell based-assays were applied to candidate genes to examine the presence/absence of known ALS pathologies in cell lines as well as human autopsy tissues. These include immunofluorescence, flow cytometry and western blotting to study toxicity, neuronal inclusion formation, interaction with TDP-43, aberrant protein degradation and accumulation in detergent-insoluble cellular fractions. Immunohistochemistry and immunofluorescence were also used to examine if candidates were present in neuronal inclusions from ALS patient spinal cord tissues.Results: The in vitro pipeline was applied to five candidate genes from an ALS family that is negative for known ALS gene mutations. Two candidates were prioritized as top candidates based on their capacity to induce known ALS cellular pathologies. In transfected cells, the variants in these two genes caused a significantly higher toxicity than wild type, formed detergent insoluble inclusions and was able to co-aggregate with TDP-43 in neuronal cells. The variants have also led to protein degradation defects. One of the candidates also co-localised with TDP-43-positive neuronal inclusions in sporadic ALS patient post-mortem tissues, a signature pathology of ALS.Discussion and conclusions: We have demonstrated the utility of a functional prioritization pipeline and successfully prioritized two novel candidate ALS genes. These genes, and its associated pathways, will be further investigated through the development of animal models to establish if there is support for its role in ALS. New ALS genes offer fresh diagnostic and therapeutic targets and tools for the generation of novel animal models to better understand disease biology and offer preclinical testing of candidate treatments for ALS in the future.

14.
Article in English | MEDLINE | ID: mdl-30907153

ABSTRACT

C9orf72 hexanucleotide repeat expansions are the most common known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Genetic testing for C9orf72 expansions in patients with ALS and/or FTD and their relatives has become increasingly available since hexanucleotide repeat expansions were first reported in 2011. The repeat number is highly variable and the threshold at which repeat size leads to neurodegeneration remains unknown. We present the case of an ALS patient who underwent genetic testing through our Motor Neurone Disease Clinic. We highlight current limitations to analysing and interpreting C9orf72 expansion test results and describe how this resulted in discordant reports of pathogenicity between testing laboratories that confounded the genetic counselling process. We conclude that patients with ALS or FTD and their at-risk family members, need to be adequately counselled about the limitations of current knowledge to ensure they are making informed decisions about genetic testing for C9orf72. Greater collaboration between clinicians, testing laboratories and researchers is required to ensure risks to patients and their families are minimised.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Genetic Counseling/standards , Genetic Testing/standards , Adult , Female , Genetic Counseling/methods , Genetic Testing/methods , Humans , Pedigree
16.
Biol Open ; 7(10)2018 Oct 16.
Article in English | MEDLINE | ID: mdl-30190267

ABSTRACT

We describe a protocol for culturing neurons from transgenic zebrafish embryos to investigate the subcellular distribution and protein aggregation status of neurodegenerative disease-causing proteins. The utility of the protocol was demonstrated on cell cultures from zebrafish that transgenically express disease-causing variants of human fused in sarcoma (FUS) and ataxin-3 proteins, in order to study amyotrophic lateral sclerosis (ALS) and spinocerebellar ataxia type-3 (SCA3), respectively. A mixture of neuronal subtypes, including motor neurons, exhibited differentiation and neurite outgrowth in the cultures. As reported previously, mutant human FUS was found to be mislocalized from nuclei to the cytosol, mimicking the pathology seen in human ALS and the zebrafish FUS model. In contrast, neurons cultured from zebrafish expressing human ataxin-3 with disease-associated expanded polyQ repeats did not accumulate within nuclei in a manner often reported to occur in SCA3. Despite this, the subcellular localization of the human ataxin-3 protein seen in cell cultures was similar to that found in the SCA3 zebrafish themselves. The finding of similar protein localization and aggregation status in the neuronal cultures and corresponding transgenic zebrafish models confirms that this cell culture model is a useful tool for investigating the cell biology and proteinopathy signatures of mutant proteins for the study of neurodegenerative disease.

18.
Neurodegener Dis ; 17(6): 304-312, 2017.
Article in English | MEDLINE | ID: mdl-29131108

ABSTRACT

BACKGROUND: Mutations in the genes encoding the heterogeneous nuclear ribonucleoproteins hnRNPA1 and hnRNPA2/B1 have been reported in a multisystem proteinopathy that includes amyotrophic lateral sclerosis (ALS) and inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia. Mutations were also described in the prion-like domain of hnRNPA1 in patients with classic ALS. Another hnRNP protein, hnRNPA3, has been found to be associated with the ALS/frontotemporal dementia protein C9orf72. OBJECTIVE: To further assess their role in ALS, we examined these hnRNPs in spinal cord tissue from sporadic (SALS) and familial ALS (FALS) patients, including C9orf72 repeat expansion-positive patients, and controls. We also sought to determine the prevalence of HNRNPA1, HNRNPA2B1, and HNRNPA3 mutations in Australian ALS patients. METHODS: Immunostaining was used to assess hnRNPs in ALS patient spinal cords. Mutation analysis of the HNRNPA1, HNRNPA2B1, and HNRNPA3 genes was performed in FALS and of their prion-like domains in SALS patients. RESULTS: Immunostaining of spinal motor neurons of ALS patients with the C9orf72 repeat expansion showed significant mislocalisation of hnRNPA3, and no differences in hnRNPA1 or A2/B1 localisation, compared to controls. No novel or known mutations were identified in HNRNPA1, HNRNPA2B1, or HNRNPA3 in Australian ALS patients. CONCLUSIONS: hnRNPA3 pathology was identified in motor neurons of ALS patients with C9orf72 repeat expansions, implicating hnRNPA3 in the pathogenesis of C9orf72-linked ALS. hnRNPA3 warrants further investigation into the pathogenesis of ALS linked to C9orf72. This study also determined that HNRNP mutations are not a common cause of FALS and SALS in Australia.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Motor Neurons/pathology , Polymorphism, Single Nucleotide/genetics , Spinal Cord/pathology , Australia/epidemiology , C9orf72 Protein/genetics , Case-Control Studies , DNA Mutational Analysis , Female , Humans , Male
19.
Nat Commun ; 8(1): 611, 2017 09 20.
Article in English | MEDLINE | ID: mdl-28931804

ABSTRACT

Cross-ethnic genetic studies can leverage power from differences in disease epidemiology and population-specific genetic architecture. In particular, the differences in linkage disequilibrium and allele frequency patterns across ethnic groups may increase gene-mapping resolution. Here we use cross-ethnic genetic data in sporadic amyotrophic lateral sclerosis (ALS), an adult-onset, rapidly progressing neurodegenerative disease. We report analyses of novel genome-wide association study data of 1,234 ALS cases and 2,850 controls. We find a significant association of rs10463311 spanning GPX3-TNIP1 with ALS (p = 1.3 × 10-8), with replication support from two independent Australian samples (combined 576 cases and 683 controls, p = 1.7 × 10-3). Both GPX3 and TNIP1 interact with other known ALS genes (SOD1 and OPTN, respectively). In addition, GGNBP2 was identified using gene-based analysis and summary statistics-based Mendelian randomization analysis, although further replication is needed to confirm this result. Our results increase our understanding of genetic aetiology of ALS.Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease. Here, Wray and colleagues identify association of the GPX3-TNIP1 locus with ALS using cross-ethnic meta-analyses.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Asian People/genetics , DNA-Binding Proteins/genetics , Glutathione Peroxidase/genetics , White People/genetics , Amyotrophic Lateral Sclerosis/ethnology , Australia , China , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...