Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5345, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937474

ABSTRACT

Drug-tolerance has emerged as one of the major non-genetic adaptive processes driving resistance to targeted therapy (TT) in non-small cell lung cancer (NSCLC). However, the kinetics and sequence of molecular events governing this adaptive response remain poorly understood. Here, we combine real-time monitoring of the cell-cycle dynamics and single-cell RNA sequencing in a broad panel of oncogenic addiction such as EGFR-, ALK-, BRAF- and KRAS-mutant NSCLC, treated with their corresponding TT. We identify a common path of drug adaptation, which invariably involves alveolar type 1 (AT1) differentiation and Rho-associated protein kinase (ROCK)-mediated cytoskeletal remodeling. We also isolate and characterize a rare population of early escapers, which represent the earliest resistance-initiating cells that emerge in the first hours of treatment from the AT1-like population. A phenotypic drug screen identify farnesyltransferase inhibitors (FTI) such as tipifarnib as the most effective drugs in preventing relapse to TT in vitro and in vivo in several models of oncogenic addiction, which is confirmed by genetic depletion of the farnesyltransferase. These findings pave the way for the development of treatments combining TT and FTI to effectively prevent tumor relapse in oncogene-addicted NSCLC patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Farnesyltranstransferase , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Farnesyltranstransferase/antagonists & inhibitors , Farnesyltranstransferase/metabolism , Farnesyltranstransferase/genetics , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Animals , Mice , Oncogene Addiction/genetics , Molecular Targeted Therapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Xenograft Model Antitumor Assays , Oncogenes/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Quinolones
2.
Cancers (Basel) ; 14(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35681591

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths among men and women worldwide. Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) are effective therapies for advanced non-small-cell lung cancer (NSCLC) patients harbouring EGFR-activating mutations, but are not curative due to the inevitable emergence of resistances. Recent in vitro studies suggest that resistance to EGFR-TKI may arise from a small population of drug-tolerant persister cells (DTP) through non-genetic reprogramming, by entering a reversible slow-to-non-proliferative state, before developing genetically derived resistances. Deciphering the molecular mechanisms governing the dynamics of the drug-tolerant state is therefore a priority to provide sustainable therapeutic solutions for patients. An increasing number of molecular mechanisms underlying DTP survival are being described, such as chromatin and epigenetic remodelling, the reactivation of anti-apoptotic/survival pathways, metabolic reprogramming, and interactions with their micro-environment. Here, we review and discuss the existing proposed mechanisms involved in the DTP state. We describe their biological features, molecular mechanisms of tolerance, and the therapeutic strategies that are tested to target the DTP.

3.
Front Immunol ; 11: 1396, 2020.
Article in English | MEDLINE | ID: mdl-32733462

ABSTRACT

Vγ9Vδ2 T cells are known to be efficient anti-tumor effectors activated through phosphoantigens (PAg) that are naturally expressed by tumor cells or induced by amino bisphosphonates treatment. This PAg-activation which is TCR and butyrophilin BTN3A dependent can be modulated by NKG2D ligands, immune checkpoint ligands, adhesion molecules, and costimulatory molecules. This could explain the immune-resistance observed in certain clinical trials based on Vγ9Vδ2 T cells therapies. In NSCLC, encouraging responses were obtained with zoledronate administrations for 50% of patients. According to the in vivo results, we showed that the in vitro Vγ9Vδ2 T cell reactivity depends on the NSCLC cell line considered. If the PAg-pretreated KRAS mutated A549 is highly recognized and killed by Vγ9Vδ2 T cells, the EGFR mutated PC9 remains resistant to these killers despite a pre-treatment either with zoledronate or with exogenous BrHPP. The immune resistance of PC9 was shown not to be due to immune checkpoint ligands able to counterbalance NKG2D ligands or adhesion molecules such as ICAM-1 highly expressed by PC9. RHOB has been shown to be involved in the Vγ9Vδ2 TCR signaling against these NSCLC cell lines, in this study we therefore focused on its intracellular behavior. In comparison to a uniform distribution of RHOB in endosomes and at the plasma membrane in A549, the presence of large endosomal clusters of RHOB was visualized by a split-GFP system, suggesting that RHOB rerouting in the PC9 tumor cell could impair the reactivity of the immune response.


Subject(s)
Antigens, Neoplasm/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , rhoB GTP-Binding Protein/metabolism , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Cells, Cultured , Endosomes/immunology , Endosomes/metabolism , Humans , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Phosphorylation
4.
J Pathol ; 247(1): 60-71, 2019 01.
Article in English | MEDLINE | ID: mdl-30206932

ABSTRACT

The cell cycle inhibitor p27Kip1 is a tumor suppressor via the inhibition of CDK complexes in the nucleus. However, p27 also plays other functions in the cell and may acquire oncogenic roles when located in the cytoplasm. Activation of oncogenic pathways such as Ras or PI3K/AKT causes the relocalization of p27 in the cytoplasm, where it can promote tumorigenesis by unclear mechanisms. Here, we investigated how cytoplasmic p27 participates in the development of non-small cell lung carcinomas. We provide molecular and genetic evidence that the oncogenic role of p27 is mediated, at least in part, by binding to and inhibiting the GTPase RhoB, which normally acts as a tumor suppressor in the lung. Genetically modified mice revealed that RhoB expression is preferentially lost in tumors in which p27 is absent and maintained in tumors expressing wild-type p27 or p27CK- , a mutant that cannot inhibit CDKs. Moreover, although the absence of RhoB promoted tumorigenesis in p27-/- animals, it had no effect in p27CK- knock-in mice, suggesting that cytoplasmic p27 may act as an oncogene, at least in part, by inhibiting the activity of RhoB. Finally, in a cohort of lung cancer patients, we identified a subset of tumors harboring cytoplasmic p27 in which RhoB expression is maintained and these characteristics were strongly associated with decreased patient survival. Thus, monitoring p27 localization and RhoB levels in non-small cell lung carcinoma patients appears to be a powerful prognostic marker for these tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Adenocarcinoma of Lung/enzymology , Carcinoma, Non-Small-Cell Lung/enzymology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cytoplasm/enzymology , Lung Neoplasms/enzymology , rhoB GTP-Binding Protein/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Carcinogenesis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cyclin-Dependent Kinase Inhibitor p27/deficiency , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cytoplasm/genetics , Cytoplasm/pathology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , HEK293 Cells , HeLa Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, 129 Strain , Mice, Knockout , Protein Binding , Signal Transduction , rhoB GTP-Binding Protein/genetics
5.
EMBO Mol Med ; 9(2): 238-250, 2017 02.
Article in English | MEDLINE | ID: mdl-28003335

ABSTRACT

Although lung cancer patients harboring EGFR mutations benefit from treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKI), most of them rapidly relapse. RHOB GTPase is a critical player in both lung carcinogenesis and the EGFR signaling pathway; therefore, we hypothesized that it could play a role in the response to EGFR-TKI In a series of samples from EGFR-mutated patients, we found that low RHOB expression correlated with a good response to EGFR-TKI treatment while a poor response correlated with high RHOB expression (15.3 versus 5.6 months of progression-free survival). Moreover, a better response to EGFR-TKI was associated with low RHOB levels in a panel of lung tumor cell lines and in a lung-specific tetracycline-inducible EGFRL858R transgenic mouse model. High RHOB expression was also found to prevent erlotinib-induced AKT inhibition in vitro and in vivo Furthermore, a combination of the new-generation AKT inhibitor G594 with erlotinib induced tumor cell death in vitro and tumor regression in vivo in RHOB-positive cells. Our results support a role for RHOB/AKT signaling in the resistance to EGFR-TKI and propose RHOB as a potential predictor of patient response to EGFR-TKI treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/physiopathology , Drug Resistance , ErbB Receptors/genetics , Proto-Oncogene Proteins c-akt/metabolism , rhoB GTP-Binding Protein/metabolism , Animals , Enzyme Inhibitors/pharmacology , Humans , Mice , Mice, Transgenic , Protein-Tyrosine Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...