Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr A ; 63(Pt 2): 135-45, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17301474

ABSTRACT

In order to assess whether the effects of intramolecular dynamic electron correlation on the electron density would be experimentally detectable, X-ray structure factors which include thermal averaging effects have been calculated from the electron densities of a range of small-molecule molecular crystals [C(2)H(6), C(2)H(4), C(2)H(2), BH(3)NH(3), NH(3), NH(2)CN, OCl(2), CO(NH(2))(2)] using the procrystal, Hartree-Fock, B3LYP and QCISD wavefunction models with the superposition-of-independent-molecules method to create the electron density in the crystal. A naive R-factor-like criterion of 1% has been used to assess detectability, as well as a more sophisticated method based on real X-ray data for estimating experimental errors. Correlation effects on the density are found to be only marginally above the 1% detectability threshold, and are about one to two orders of magnitude smaller than deviations from the procrystal model. Further, only 10% of the data up to 1.2 A(-1) are significant for detecting correlation effects; and of those 10%, many are at low intensity and therefore difficult to measure. Another method to estimate the experimental errors indicates that the intramolecular correlation effects would not be measurable. Although thermal averaging effects are important for the absolute value of the calculated structure factors, the use of different thermal averaging models does not change our overall conclusion of detectability. Likewise, calculations using the B3LYP method for some molecules do not show significant changes in the amount of, or distribution of, the changes that would be detectable by experiment.


Subject(s)
Crystallography, X-Ray/methods , Ammonia/chemistry , Boranes/chemistry , Electrons , Ethane/chemistry , Ethylenes/chemistry
2.
Acta Crystallogr A ; 58(Pt 5): 451-9, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12192118

ABSTRACT

Total charge densities rho(r) of solid NH(3) have been derived using an ab initio crystalline molecular-orbital approach and also from multipole refinement of the structure factors obtained from the same charge density. Comparison of the topological features of these charge densities, as defined by the quantum theory of atoms in molecules, has been used to probe the ability of the multipole analysis to reproduce exactly known total charge-density distributions. For the most part, multipole refinement satisfactorily returns the features of the original density, although the fit to theoretical data is not as good as that to the experimental data. The one topological parameter that is poorly reproduced is the Laplacian nabla (2)rho(r(b)) at NH bond critical points.

3.
Acta Crystallogr A ; 58(Pt 3): 244-51, 2002 May.
Article in English | MEDLINE | ID: mdl-11961285

ABSTRACT

Constrained Hartree-Fock calculations have been performed to obtain wavefunctions that reproduce experimental X-ray structure-factor magnitudes for crystalline NH3 to within the limits of experimental error. Different model densities using both a single molecule and clusters of NH3 in the calculation of X-ray structure-factor magnitudes have been examined. The effects of the crystalline lattice on the experimental wavefunction of the NH3 unit can be reproducibly recovered. The construction of structure-factor magnitudes based on normally distributed random perturbations of the experimental values has also been used to gauge the accuracy of integrated atomic properties obtained from the wavefunctions, the point at which the constraint procedure should be terminated, and the approximate error in the experimental sigma(k) values.

SELECTION OF CITATIONS
SEARCH DETAIL
...