Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276456

ABSTRACT

This study presents research results concerning the vacuum carburizing of four steel grades, specifically conforming to European standards 1.7243, 1.6587, 1.5920, and 1.3532. The experimental specimens exhibited variations primarily in nickel content, ranging from 0 to approximately 3.8 wt. %. As a comparative reference, gas carburizing was also conducted on the 1.3532 grade, which had the highest nickel content. Comprehensive structural analysis was carried out on the resultant carburized layers using a variety of techniques, such as optical and electron scanning, transmission microscopy, and X-ray diffraction. Additionally, mechanical properties such as hardness and fatigue strength were assessed. Fatigue strength evaluation was performed on un-notched samples having a circular cross-section with a diameter of 12 mm. Testing was executed via a three-point bending setup subjected to sinusoidally varying stresses ranging from 0 to maximum stress levels. The carburized layers produced had effective thicknesses from approximately 0.8 to 1.4 mm, surface hardness levels in the range of 600 to 700 HV, and estimated retained austenite contents from 10 to 20 vol%. The observed fatigue strength values for the layers varied within the range from 1000 to 1350 MPa. It was found that changing the processing method from gas carburizing, which induced internal oxidation phenomena, to vacuum carburizing improved the fatigue properties to a greater extent than increasing the nickel content of the steel.

2.
Polymers (Basel) ; 15(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37765560

ABSTRACT

Regarding the dynamic development of 3D printing technology, as well as its application in a growing part of industries, i.e., in the automotive industry, construction industry, medical industry, etc., there is a notable opportunity for its application in producing dental implants, which presents a promising alternative to traditional implant manufacturing methods. The medical industry is very restrictive regarding the applied materials, and it is necessary to use materials that exhibit very good mechanical and thermal parameters, show clinical indifference and biocompatibility, are non-allergenic and non-cancerous, and are likely to sterilize. Such materials are poly(aryl-ether-ketone)s (PAEK)s, mainly poly(ether-ether-ketone) (PEEK) and poly(ether-ketone-ketone) (PEKK), that are found to be high-performance polymers and can be defined as materials that retain their functionality even in extreme conditions. In the present paper, two types of PEEKs and PEKK were compared regarding their structural, mechanical, and thermal properties along with the biological activity toward selected strains. The tested samples were obtained with Fused Deposition Modeling (FDM) technology. The PEKK, after heat treatment, exhibits the most promising mechanical properties as well as less bacterial adhesion on its surface when compared to both PEEKs. Consequently, among the evaluated materials, PEKK after heat treatment stands out as the optimal selection for a dental prosthesis.

3.
Polymers (Basel) ; 14(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36080519

ABSTRACT

Cross-linked polyethylene (XLPE) is one of the most popular insulation materials used in the production of medium and high voltage cables (MV, HV). This article presents the results of research carried out on two types of commercially used insulation materials, modified with the addition of organophilic phyllosilicate (CLOISITE C20A)and halloysite nanotubes (HNTs). The influence of fillers on the mechanical properties of insulating materials is discussed as a potential mechanism for increasing their resistance to the phenomenon of water-tree. SEM and XRD analyses were performed to investigate the morphology and DSC for comparing phase transitions. Mechanical and functional properties for different concentrations of nanofillers, such as their hybrids, were also investigated.

4.
Molecules ; 26(5)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802397

ABSTRACT

Ti(C,N)-reinforced alumina-zirconia composites with different ratios of C to N in titanium carbonitride solid solutions, such as Ti(C0.3,N0.7) (C:N = 30:70) and Ti(C0.5,N0.5) (C:N = 50:50), were tested to improve their mechanical properties. Spark plasma sintering (SPS) with temperatures ranging from 1600 °C to 1675 °C and pressureless sintering (PS) with a higher temperature of 1720 °C were used to compare results. The following mechanical and physical properties were determined: Vickers hardness, Young's modulus, apparent density, wear resistance, and fracture toughness. A composite with the addition of Ti(C0.5,N0.5)n nanopowder exhibited the highest Vickers hardness of over 19.0 GPa, and its fracture toughness was at 5.0 Mpa·m1/2. A composite with the Ti(C0.3,N0.7) phase was found to have lower values of Vickers hardness (by about 10%), friction coefficient, and specific wear rate of disc (Wsd) compared to the composite with the addition of Ti(C0.5,N0.5). The Vickers hardness values slightly decreased (from 5% to 10%) with increasing sintering temperature. The mechanical properties of the samples sintered using PS were lower than those of the samples that were spark plasma sintered. This research on alumina-zirconia composites with different ratios of C to N in titanium carbonitride solid solution Ti(C,N), sintered using an unconventional SPS method, reveals the effect of C/N ratios on improving mechanical properties of tested composites. X-ray analysis of the phase composition and an observation of the microstructure was carried out.


Subject(s)
Aluminum Oxide/chemistry , Biocompatible Materials/chemistry , Ceramics/chemistry , Plasma Gases/chemistry , Titanium/chemistry , Zirconium/chemistry , Hardness , Materials Testing , Mechanical Phenomena , Surface Properties , Temperature
5.
Materials (Basel) ; 14(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466504

ABSTRACT

This paper describes the microstructure and properties of titanium-based composites obtained as a result of a reactive spark plasma sintering of a mixture of titanium and nanostructured (Ti,Mo)C-type carbide in a carbon shell. Composites with different ceramic addition mass percentage (10 and 20 wt %) were produced. Effect of content of elemental carbon covering nc-(Ti,Mo)C reinforcing phase particles on the microstructure, mechanical, tribological, and corrosion properties of the titanium-based composites was investigated. The microstructural evolution, mechanical properties, and tribological behavior of the Ti + (Ti,Mo)C/C composites were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction analysis (EBSD), X-ray photoelectron spectroscopy (XPS), 3D confocal laser scanning microscopy, nanoindentation, and ball-on-disk wear test. Moreover, corrosion resistance in a 3.5 wt % NaCl solution at RT were also investigated. It was found that the carbon content affected the tested properties. With the increase of carbon content from ca. 3 to 40 wt % in the (Ti,Mo)C/C reinforcing phase, an increase in the Young's modulus, hardness, and fracture toughness of spark plasma sintered composites was observed. The results of abrasive and corrosive resistance tests were presented and compared with experimental data obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. Moreover, it was found that an increase in the percentage of carbon increased the resistance to abrasive wear and to electrochemical corrosion of composites, measured by the relatively lower values of the friction coefficient and volume of wear and higher values of resistance polarization. This resistance results from the fact that a stable of TiO2 layer doped with MoO3 is formed on the surface of the composites. The results of experimental studies on the composites were compared with those obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase.

6.
Polymers (Basel) ; 12(6)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580449

ABSTRACT

In order to develop flame retardant and relatively green cable coating materials, polyethylene (PE) was melt blended with 5, 7.5, or 10 wt. % of a natural calcium montmorillonite (C-Ca) pre-dispersed in EBA (ethylene-butyl acrylate copolymer), EVA (ethylene-vinyl acetate copolymer), or mEVA (EVA modified with maleic anhydride). For comparison, an organophilised montmorillonite (CW9) was tested. The main study of composites containing EBA/C-Ca, EVA/C-Ca, and mEVA/CW9 pre-dispersions revealed that both clays were not fully exfoliated in the matrix, however, C-Ca (7.5 wt. %) markedly increased limited oxygen index (LOI) from 18% O2 (PE) up to 22.0% O2. An insignificantly higher LOI value (22.2% O2) was noted for a sample with 10 wt. % of CW9. The fillers did not affect hardness, but spectacularly increased Young's modulus of the compression-moulded samples (tensile strength and elongation at break values were reduced). Thermal features of the matrix were not unpredictably changed by the clays. Generally, all the tests revealed that PE filled with the chemically untreated natural C-Ca reached similar or better mechanical and thermal features than materials containing the ammonium salt-modified montmorillonite.

7.
Materials (Basel) ; 13(11)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471181

ABSTRACT

The machinability of hard-to-cut CoCr alloys manufactured by Selective Laser Melting (SLM) technology is not yet sufficiently studied. Therefore, this work focuses on evaluation of surface texture formation during face turning of CoCr alloy. As part of the research, two specimen types were subject to comparison: made with the application of conventional casting and manufactured by additive manufacturing-SLM. A number of analytical and experimental methods were employed to describe the specimen composition and morphology, as: X-Ray Diffraction Analysis (XRD), optical metallurgical microscopy, confocal optical microscopy, and Vickers hardness HV0.1 measurements. In the next stage, the measurements of surface topographies formed during turning in a range of variable cutting speeds and feeds were carried out. Ultimately the multi-factor MANOVA (Multivariate Analysis of Variance) illustrating the influence of manufacturing technology, cutting speed, and feed ratio on selected surface parameters of samples was made. It has been demonstrated that during face turning with feeds up to 0.15 mm/rev, the similar values of surface roughness height and material ratio curve parameters were reached for both tested CoCr alloys. However, in a range of higher feed values, the surface quality of CoCr samples fabricated by SLM was lower than that reached for CoCr after casting process.

8.
Chemistry ; 18(3): 899-914, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22170304

ABSTRACT

Template combination of copper acetate (Cu(AcO)(2)⋅H(2)O) with sodium dicyanamide (NaN(C≡N)(2), 2 equiv) or cyanoguanidine (N≡CNHC(=NH)NH(2), 2 equiv) and an alcohol ROH (used also as solvent) leads to the neutral copper(II)-(2,4-alkoxy-1,3,5-triazapentadienato) complexes [Cu{NH=C(OR)NC(OR)=NH}(2)] (R = Me (1), Et (2), nPr (3), iPr (4), CH(2)CH(2)OCH(3) (5)) or cationic copper(II)-(2-alkoxy-4-amino-1,3,5-triazapentadiene) complexes [Cu{NH=C(OR)NHC(NH(2))=NH}(2)](AcO)(2) (R = Me (6), Et (7), nPr (8), nBu (9), CH(2)CH(2)OCH(3) (10)), respectively. Several intermediates of this reaction were isolated and a pathway was proposed. The deprotonation of 6-10 with NaOH allows their transformation to the corresponding neutral triazapentadienates [Cu{NH=C(OR)NC(NH(2))=NH}(2)] 11-15. Reaction of 11, 12 or 15 with acetyl acetone (MeC(=O)CH(2)C(=O)Me) leads to liberation of the corresponding pyrimidines NC(Me)CHC(Me)NCNHC(=NH)OR, whereas the same treatment of the cationic complexes 6, 7 or 10 allows the corresponding metal-free triazapentadiene salts {NH(2)C(OR)=NC(NH(2))=NH(2)}(OAc) to be isolated. The alkoxy-1,3,5-triazapentadiene/ato copper(II) complexes have been applied as efficient catalysts for the TEMPO radical-mediated mild aerobic oxidation of alcohols to the corresponding aldehydes (molar yields of aldehydes of up to 100 % with >99 % selectivity) and for the solvent-free microwave-assisted synthesis of ketones from secondary alcohols with tert-butylhydroperoxide as oxidant (yields of up to 97 %, turnover numbers of up to 485 and turnover frequencies of up to 1170 h(-1)).

9.
Inorg Chem ; 50(3): 918-31, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21210652

ABSTRACT

New hydrazone o-HO-phenylhydrazo-ß-diketones (OHADB), R(1)NHN═CR(2)R(3) [R(1) = HO-2-C(6)H(4), R(2) = R(3) = COMe (H(2)L(1), 1), R(2)R(3) = COCH(2)C(Me)(2)CH(2)CO (H(2)L(2), 2), R(2) = COMe, R(3) = COOEt (H(2)L(4), 4); R(1) = HO-2-O(2)N-4-C(6)H(3), R(2)R(3) = COCH(2)C(Me)(2)CH(2)CO (H(2)L(3), 3), R(2) = COMe, R(3) = COOEt (H(2)L(5), 5), R(2)R(3) = COMe (H(2)L(6), 6A)], and their Cu(II) complexes [Cu(2)(CH(3)OH)(2)(µ-L(1))(2)] 7, [Cu(2)(H(2)O)(2)(µ-L(2))(2)] 8, [Cu(H(2)O)(L(3))] 9, [Cu(2)(µ-L(4))(2)](n) 10, [Cu(H(2)O)(L(5))] 11, [Cu(2)(H(2)O)(2)(µ-L(6))(2)] 12A and [Cu(H(2)O)(2)(L(6))] 12B were synthesized and fully characterized, namely, by X-ray analysis (4, 5, 7-12B). Reaction of 6A, Cu(NO(3))(2) and ethylenediamine (en) leads, via Schiff-base condensation, to [Cu{H(2)NCH(2)CH(2)N═C(Me)C(COMe)═NNC(6)H(3)-2-O-4-NO(2)}] (13), and reactions of 12A and 12B with en give the Schiff-base polymer [Cu{H(2)NCH(2)CH(2)N═C(Me)C(COMe)═NNC(6)H(3)-2-O-4-NO(2)}](n) 14. The dependence of the OHADB tautomeric equilibria on temperature, electronic properties of functional groups, and solvent polarity was studied. The OHADB from unsymmetrical ß-diketones exist in solution as a mixture of enol-azo and hydrazo tautomeric forms, while in the solid state all the free and coordinated OHADB crystallize in the hydrazo form. The relative stabilities of various tautomers were studied by density functional theory (DFT). 7-14 show catalytic activities for peroxidative oxidation (in MeCN/H(2)O) of cyclohexane to cyclohexanol and cyclohexanone, for selective aerobic oxidation of benzyl alcohols to benzaldehydes in aq. solution, mediated by TEMPO radical, under mild conditions and for the MW-assisted solvent-free synthesis of ketones from secondary alcohols with tert-butylhydroperoxide as oxidant.

10.
Dalton Trans ; 39(41): 9879-88, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-20844801

ABSTRACT

The new dicopper(ii) complexes [Cu(2)(µ-Hmdea)(2)(NCS)(2)] (1) and [Cu(2)(µ-Hedea)(2)(N(3))(2)]·(H(2)O)(0.25) (2) with the {Cu(2)(µ-O)(2)} diethanolaminate cores have been easily generated by aqueous medium self-assembly reactions of copper(ii) nitrate with N-methyl- or N-ethyldiethanolamine (H(2)mdea or H(2)edea, respectively), in the presence of sodium thiocyanate (for 1) or sodium azide (for 2) as ancillary ligands sources. They have been isolated as air-stable crystalline solids and fully characterized by IR and UV-vis spectroscopies, ESI-MS(+), elemental and single-crystal X-ray diffraction analyses. The latter complex also features a fourfold linkage of neighbouring dimeric units via strong intermolecular O-HO hydrogen bonds, giving rise to the formation of tetracopper aggregates. The catalytic activity of compounds 1 and 2 has been studied for the mild (50-80 °C) and selective oxidations of alcohols, namely for (i) the aerobic aqueous medium oxidation of benzyl alcohols to benzaldehydes, mediated by TEMPO radical, and for (ii) the solvent-free oxidation of secondary alcohols to ketones by t-BuOOH under microwave (MW) irradiation. Complex 2 shows the highest efficiency in both oxidation systems, resulting in up to 99% molar yields (based on the alcohol substrate) of products. In addition, remarkably high values of TON (1020) and TOF (4080 h(-1)) have been achieved in the MW-assisted peroxidative oxidation of 1-phenylethanol to acetophenone (model reaction). Attractive green features of these catalytic systems include the operation in aqueous or solvent-free reaction medium, under mild conditions and with high yields and selectivities, using Cu catalyst precursors that are readily available by self-assembly in water of simple chemicals.

11.
Chem Commun (Camb) ; 46(16): 2766-8, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20369176

ABSTRACT

A facile, efficient and selective solvent-free synthesis of ketones from secondary alcohols with tert-butylhydroperoxide (TBHP) as the oxidant under microwave irradiation is achieved, where the copper(ii) 2,4-alkoxy-1,3,5-triazapentadienato complexes are efficient catalysts providing high yields (up to 100%), TONs (up to 890) and TOFs (up to 1780 h(-1)).


Subject(s)
Alcohols/chemistry , Alkadienes/chemistry , Aza Compounds/chemistry , Copper/chemistry , Hydrogen Peroxide/chemistry , Ketones/chemical synthesis , Organometallic Compounds/chemistry , Catalysis , Microwaves , Models, Molecular , Oxidation-Reduction , Solvents/chemistry
12.
Chem Commun (Camb) ; (2): 244-5, 2004 Jan 21.
Article in English | MEDLINE | ID: mdl-14737570

ABSTRACT

New efficient vanadium co-catalysts have been developed for the oxidation of some alcohols with O(2) catalysed by N-hydroxyphthalimide (NHPI). Various alcohols (primary and secondary) were selectively oxidized by O(2) under mild conditions in the presence of a catalytic amount of NHPI as a radical-producing agent combined with small amounts of vanadium complexes with or without the addition of a simple salt (e.g. LiCl) or base (e.g. pyridine).

SELECTION OF CITATIONS
SEARCH DETAIL
...