Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antiviral Res ; 228: 105939, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909960

ABSTRACT

Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.


Subject(s)
Dengue Virus , Dengue , Glucokinase , Glycolysis , NAD , Viral Nonstructural Proteins , Virus Replication , Glycolysis/drug effects , Dengue Virus/drug effects , Glucokinase/metabolism , Glucokinase/antagonists & inhibitors , Humans , Virus Replication/drug effects , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Animals , Dengue/drug therapy , Dengue/virology , Dengue/metabolism , NAD/metabolism , NAD/biosynthesis , Cell Line , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Glucose/metabolism , Liver/virology , Liver/metabolism , Antiviral Agents/pharmacology , Viral Proteases , Serine Endopeptidases , Nucleoside-Triphosphatase , DEAD-box RNA Helicases
2.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055105

ABSTRACT

Hepatitis C virus (HCV) relies on cellular lipid metabolism for its replication, and actively modulates lipogenesis and lipid trafficking in infected hepatocytes. This translates into an intracellular accumulation of triglycerides leading to liver steatosis, cirrhosis and hepatocellular carcinoma, which are hallmarks of HCV pathogenesis. While the interaction of HCV with hepatocyte metabolic pathways is patent, how viral proteins are able to redirect central carbon metabolism towards lipogenesis is unclear. Here, we report that the HCV protein NS5A activates the glucokinase (GCK) isoenzyme of hexokinases through its D2 domain (NS5A-D2). GCK is the first rate-limiting enzyme of glycolysis in normal hepatocytes whose expression is replaced by the hexokinase 2 (HK2) isoenzyme in hepatocellular carcinoma cell lines. We took advantage of a unique cellular model specifically engineered to re-express GCK instead of HK2 in the Huh7 cell line to evaluate the consequences of NS5A-D2 expression on central carbon and lipid metabolism. NS5A-D2 increased glucose consumption but decreased glycogen storage. This was accompanied by an altered mitochondrial respiration, an accumulation of intracellular triglycerides and an increased production of very-low density lipoproteins. Altogether, our results show that NS5A-D2 can reprogram central carbon metabolism towards a more energetic and glycolytic phenotype compatible with HCV needs for replication.


Subject(s)
Glucokinase/metabolism , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , Hepatocytes/metabolism , Hepatocytes/virology , RNA-Dependent RNA Polymerase/metabolism , Viral Nonstructural Proteins/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Glycogen/metabolism , Glycolysis , Host-Pathogen Interactions , Humans , Lipid Metabolism , Lipogenesis , Mitochondria/metabolism , Protein Binding , Protein Interaction Domains and Motifs , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...