Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 43(22): 10907-24, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26578575

ABSTRACT

Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions. Here, we introduce a novel approach based on the competition between Förster resonance energy transfer (FRET), protein-induced fluorescence enhancement (PIFE) and quenching to dissect SsoSSB binding dynamics at single-monomer resolution. We demonstrate that SsoSSB follows a monomer-by-monomer binding mechanism that involves a positive-cooperativity component between adjacent monomers. We found that SsoSSB dynamic behaviour is closer to that of Replication Protein A than to Escherichia coli SSB; a feature that might be inherited from the structural analogies of their DNA-binding domains. We hypothesize that SsoSSB has developed a balance between high-density binding and a highly dynamic interaction with ssDNA to ensure efficient protection of the genome but still allow access to ssDNA during vital cellular processes.


Subject(s)
Archaeal Proteins/metabolism , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/metabolism , DNA, Single-Stranded/chemistry , Fluorescence Resonance Energy Transfer , Protein Binding , Sulfolobus solfataricus
2.
J Phys Chem B ; 117(10): 2926-37, 2013 Mar 14.
Article in English | MEDLINE | ID: mdl-23379686

ABSTRACT

The self-aggregation behavior of the double-chained ionic liquid (IL) 1,3-didecyl-2-methylimidazolium chloride ([C10C10mim]Cl) in aqueous solution has been investigated with a number of different experimental techniques. Two cmc values (cmc1 and cmc2) are obtained from conductivity measurements. The fraction of neutralized charge on the micellar surface suggests that cmc1 corresponds to the formation of spherical micelles and cmc2 to the transition from spherical to cylindrical micelles. Data obtained from fluorescence spectroscopy (using pyrene and Nile red as chemical probes), fluorescence anisotropy (using rhodamine B as probe), and chemical shift (1)H NMR (in D2O) provide a picture that is also consistent with a sphere-to-cylinder transition. This structural change is further confirmed by diffusion-ordered NMR spectroscopy (DOSY), from the self-diffusion coefficients for surfactant unimer and aggregates. Furthermore, a third evolution from cylindrical micelles to bilayer aggregates is proposed from the analysis of diffusion coefficients at high surfactant concentration ([IL] > 0.2 M). Phase scanning experiments performed with polarized light microscopy clearly demonstrate the presence of a lamellar liquid crystalline phase at very high IL concentration, thus confirming the coexistence of bilayer structures with elongated micelles, found at lower concentration. Additionally, [C10C10mim]Cl micelles are proposed as novel reaction media, as evidenced by the solvolysis reaction of 4-methoxybenzenesulfonyl chloride (MBSC).

SELECTION OF CITATIONS
SEARCH DETAIL
...