Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Exp Cell Res ; 391(2): 111938, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32278688

ABSTRACT

Melanoma is characterized by high heterogeneity and plasticity, most likely due to the presence of mutated melanocyte stem cells or immature progenitor cells in the skin that serves as precursors to melanoma. In the present study, for the first time, we identified rare cells in the murine melanoma B16F10, and human A2058 and SK-MEL-28 cell lines that express pluripotency markers, including Oct4, Nanog, Sox2 and a marker of melanoma cancer cells (ALDH1/2). These cells are very small with round morphology and they grow onto melanoma cells, thereby demonstrating feeder layer dependence similar to that of other pluripotent cells. These cells underwent self-renewal, symmetric and asymmetric division. We called these cells murine very small cancer stem cells (VSCSC). VSCSC were also found in B16F10-derived clones after 3-5 consecutive passages, where they occur as single cells or as small colonies, nevertheless, always using melanoma cells as feeders. These cells formed melanospheres enriched with Oct4-and ALDH1/2-positive cells. We also evaluated the possible effect of VSCSC that presented in the parental cell line (B16F10) and in clones based on their functional characteristics. We found that VCSCS present in the B16F10 cell line reappearing in their clones were required for continuous tumor growth and were responsible for melanoma cell heterogeneity and plasticity rather than directly affecting functional characteristics of melanoma cells. Our data, together with those of previous reports suggested the existence of melanoma-competent melanocyte stem cells, which corroborate the hypothesis of the existence of tumor-initiating cells and cancer stem cell hierarchies, at least in melanoma.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/secondary , Melanoma, Experimental/pathology , Neoplastic Stem Cells/pathology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Recurrence , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Tumor Cells, Cultured
2.
Exp. Cell. Res. ; 391(2): 111938, 2020.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17599

ABSTRACT

Melanoma is characterized by high heterogeneity and plasticity, most likely due to the presence of mutated melanocyte stem cells or immature progenitor cells in the skin that serves as precursors to melanoma. In the present study, for the first time, we identified rare cells in the murine melanoma B16F10, and human A2058 and SK-MEL-28?cell lines that express pluripotency markers, including Oct4, Nanog, Sox2 and a marker of melanoma cancer cells (ALDH1/2). These cells are very small with round morphology and they grow onto melanoma cells, thereby demonstrating feeder layer dependence similar to that of other pluripotent cells. These cells underwent self-renewal, symmetric and asymmetric division. We called these cells murine very small cancer stem cells (VSCSC). VSCSC were also found in B16F10-derived clones after 3–5 consecutive passages, where they occur as single cells or as small colonies, nevertheless, always using melanoma cells as feeders. These cells formed melanospheres enriched with Oct4-and ALDH1/2-positive cells. We also evaluated the possible effect of VSCSC that presented in the parental cell line (B16F10) and in clones based on their functional characteristics. We found that VCSCS present in the B16F10?cell line reappearing in their clones were required for continuous tumor growth and were responsible for melanoma cell heterogeneity and plasticity rather than directly affecting functional characteristics of melanoma cells. Our data, together with those of previous reports suggested the existence of melanoma-competent melanocyte stem cells, which corroborate the hypothesis of the existence of tumor-initiating cells and cancer stem cell hierarchies, at least in melanoma

3.
Exp Cell Res, v. 391, n. 2, 111938, abr. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3005

ABSTRACT

Melanoma is characterized by high heterogeneity and plasticity, most likely due to the presence of mutated melanocyte stem cells or immature progenitor cells in the skin that serves as precursors to melanoma. In the present study, for the first time, we identified rare cells in the murine melanoma B16F10, and human A2058 and SK-MEL-28?cell lines that express pluripotency markers, including Oct4, Nanog, Sox2 and a marker of melanoma cancer cells (ALDH1/2). These cells are very small with round morphology and they grow onto melanoma cells, thereby demonstrating feeder layer dependence similar to that of other pluripotent cells. These cells underwent self-renewal, symmetric and asymmetric division. We called these cells murine very small cancer stem cells (VSCSC). VSCSC were also found in B16F10-derived clones after 3–5 consecutive passages, where they occur as single cells or as small colonies, nevertheless, always using melanoma cells as feeders. These cells formed melanospheres enriched with Oct4-and ALDH1/2-positive cells. We also evaluated the possible effect of VSCSC that presented in the parental cell line (B16F10) and in clones based on their functional characteristics. We found that VCSCS present in the B16F10?cell line reappearing in their clones were required for continuous tumor growth and were responsible for melanoma cell heterogeneity and plasticity rather than directly affecting functional characteristics of melanoma cells. Our data, together with those of previous reports suggested the existence of melanoma-competent melanocyte stem cells, which corroborate the hypothesis of the existence of tumor-initiating cells and cancer stem cell hierarchies, at least in melanoma

4.
An Acad Bras Cienc ; 91(4): e20180446, 2019.
Article in English | MEDLINE | ID: mdl-31800695

ABSTRACT

Hymenaea courbaril has been used to treat different diseases, although its properties are yet to be scientifically validated. The objective of this study was to determine the cytotoxicity, genotoxicity, antigenotoxicity and antioxidant potentials of hydroethanolic extract from H. courbaril seeds. Therefore, for the cytotoxicity test an anti-melanoma assay was performed in B16F10 strain cells. The genotoxicity and antigenotoxicity was evaluated in bone marrow cells (Permit number: 002/2010) of mice, the antioxidant activity was determined by the DPPH test and the total flavonoid content was also determined. The hydroethanolic extract showed antigenotoxic effect and antioxidant activity. It was verified that total flavonoid content was 442.25±18.03 mg RE/g dry extract. HPLC-PAD chromatogram revealed presence of flavones as majority compound in evaluated extract. The results allowed us to also infer that the hydroethanolic extract from seeds shows cytotoxic activity against B16F10 melanoma cells line and it has dose-and-time-dependency.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Bone Marrow Cells/drug effects , Hymenaea/chemistry , Melanoma/pathology , Plant Extracts/pharmacology , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antioxidants/isolation & purification , Cell Line, Tumor , Chromatography, High Pressure Liquid , DNA Damage/drug effects , Dose-Response Relationship, Drug , Male , Mice , Micronucleus Tests
5.
Toxicol Appl Pharmacol ; 295: 56-67, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26876618

ABSTRACT

Benzofuroxan is an interesting ring system, which has shown a wide spectrum of biological responses against tumor cell lines. We investigated, herein, the antitumor effects of benzofuroxan derivatives (BFDs) in vitro and in a melanoma mouse model. Cytotoxic effects of twenty-two BFDs were determined by MTT assay. Effects of BFD-22 in apoptosis and cell proliferation were evaluated using Annexin V-FITC/PI and CFSE staining. In addition, the effects in the cell cycle were assessed. Flow cytometry, western blot, and fluorescence microscopy analysis were employed to investigate the apoptosis-related proteins and the BRAF signaling. Cell motility was also exploited through cell invasion and migration assays. Molecular docking approach was performed in order to verify the BFD-22 binding mode into the ATP catalytic site of BRAF kinase. Moreover, the BFD-22 antitumor effects were evaluated in a melanoma murine model using B16F10. BFD-22 was identified as a potential hit against melanoma cells. BFD-22 induced apoptosis and inhibited cell proliferation of B16F10 cells. BFD-22 has suppressed, indeed, the migratory and invasive behavior of B16F10 cells. Cyclin D1 and CDK4 expression were reduced leading to cell cycle arrest at G0/G1 phase. Of note, phosphorylation of BRAF at Ser338 was strongly down-regulated by BFD-22 in B16F10 cells. The accommodation/orientation into the binding site of BRAF was similar of BAY43-9006 (co-crystallized inhibitor of BRAF, sorafenib). Importantly, BFD-22 presented in vivo antimetastatic effects and showed better therapeutic efficacy than sorafenib and taxol. BFD-22 can be considered as a new lead compound and, then, can be helpful for the designing of novel drug candidates to treat melanoma.


Subject(s)
Cell Survival/drug effects , Hydrazines/pharmacology , Melanoma, Experimental/immunology , Oxadiazoles/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Apoptosis/drug effects , Benzoxazoles , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cyclin D1/biosynthesis , Cyclin-Dependent Kinase 4/biosynthesis , Flow Cytometry , Mice , Microscopy, Fluorescence , Molecular Docking Simulation
6.
Tumour Biol ; 36(9): 7251-67, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25894379

ABSTRACT

Capsaicin, the primary pungent component of the chili pepper, has antitumor activity. Herein, we describe the activity of RPF151, an alkyl sulfonamide analogue of capsaicin, against MDA-MB-231 breast cancer cells. RPF151 was synthetized, and molecular modeling was used to compare capsaicin and RPF151. Cytotoxicity of RPF151 on MDA-MB-231 was also evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis, by flow cytometry, and Western blot analysis of cycle-related proteins were used to evaluate the antiproliferative mechanisms. Apoptosis was evaluated by phosphatidyl-serine externalization, cleavage of Ac-YVAD-AMC, and Bcl-2 expression. The production of reactive oxygen species was evaluated by flow cytometry. RPF151 in vivo antitumor effects were investigated in murine MDA-MB-231 model. This study shows that RPF151 downregulated p21 and cyclins A, D1, and D3, leading to S-phase arrest and apoptosis. Although RPF151 has induced the activation of TRPV-1 and TRAIL-R1/DR4 and TRAIL-2/DR5 on the surface of MDA-MB-231 cells, its in vivo antitumor activity was TRPV-1-independent, thus suggesting that RPF151 should not have the same pungency-based limitation of capsaicin. In silico analysis corroborated the biological findings, showing that RPF151 has physicochemical improvements over capsaicin. Overall, the activity of RPF151 against MDA-MB-231 and its lower pungency suggest that it may have a relevant role in cancer therapy.


Subject(s)
Breast Neoplasms/genetics , Capsaicin/administration & dosage , Cell Proliferation/drug effects , Neoplasm Proteins/biosynthesis , Animals , Apoptosis/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Capsaicin/analogs & derivatives , Capsaicin/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Models, Molecular , Neoplasm Proteins/genetics , Protein Binding , Xenograft Model Antitumor Assays
7.
Adv Pharm Bull ; 4(Suppl 1): 429-36, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25364658

ABSTRACT

PURPOSE: The antitumor activity of Kielmeyera coriacea (Clusiaceae), a medicinal plant used in the treatment of parasitic, as well as fungal and bacterial infections by the Brazilian Cerrado population, was investigated. METHODS: A chloroform extract (CE) of K. coriacea was tested in the murine melanoma cell line (B16F10-Nex2) and a panel of human tumor cell lines. Tumor cell migration was determined by the wound-healing assay and the in vivo antitumor activity of CE was investigated in a melanoma cell metastatic model. 1H NMR and GC/MS were used to determine CE chemical composition. RESULTS: We found that CE exhibited strong cytotoxic activity against murine melanoma cells and a panel of human tumor cell lines in vitro. CE also inhibited growth of B16F10-Nex2 cells at sub lethal concentrations, inducing cell cycle arrest at S phase, and inhibition of tumor cell migration. Most importantly, administration of CE significantly reduced the number of melanoma metastatic nodules in vivo. Chemical analysis of CE indicated the presence of the long chain fatty compounds, 1-eicosanol, 1-docosanol, and 2-nonadecanone as main constituents. CONCLUSION: These results indicate that K. coriacea is a promising medicinal plant in cancer therapy exhibiting antitumor activity both in vitro and in vivo against different tumor cell lines.

8.
Biochimie ; 99: 195-207, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24355203

ABSTRACT

Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Here, we have demonstrated for the first time that dillapiole has broad cytotoxic effects against a variety tumor cells. For instance, we found that it can act as a pro-oxidant compound through the induction of reactive oxygen species (ROS) release in MDA-MB-231 cells. We also demonstrated that dillapiole exhibits anti-proliferative properties, arresting cells at the G0/G1 phase and its antimigration effects can be associated with the disruption of actin filaments, which in turn can prevent tumor cell proliferation. Molecular modeling studies corroborated the biological findings and suggested that dillapiole may present a good pharmacokinetic profile, mainly because its hydrophobic character, which can facilitate its diffusion through tumor cell membranes. All these findings support the fact that dillapiole is a promising anticancer agent.


Subject(s)
Allyl Compounds/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Dioxoles/pharmacology , Mitochondria/metabolism , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Allyl Compounds/chemistry , Allyl Compounds/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Calcium Signaling , Caspase 3/metabolism , Cell Movement/drug effects , Cell Survival/drug effects , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Cytoskeleton/pathology , Dioxoles/chemistry , Dioxoles/isolation & purification , Drug Screening Assays, Antitumor , Electron Transport Complex IV/metabolism , Gas Chromatography-Mass Spectrometry , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Molecular Dynamics Simulation , Piper/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification
9.
Transl Oncol ; 4(2): 101-9, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21461173

ABSTRACT

Melanoma is the most aggressive form of skin cancer, and its incidence has increased dramatically over the years. The murine B16F10 melanoma in syngeneic C57Bl/6 mice has been used as a highly aggressive model to investigate tumor development. Presently, we demonstrate in the B16F10-Nex2 subclone that silencing of SOCS-1, a negative regulator of Jak/Stat pathway, leads to reversal of the tumorigenic phenotype and inhibition of melanoma cell metastasis. SOCS-1 silencing with short hairpin RNA affected tumor growth and cell cycle regulation with arrest at the S phase with large-sized nuclei, reduced cell motility, and decreased melanoma cell invasion through Matrigel. A clonogenic assay showed that SOCS-1 acted as a modulator of resistance to anoikis. In addition, downregulation of SOCS-1 decreased the expression of epidermal growth factor receptor (mainly the phosphorylated-R), Ins-Rα, and fibroblast growth factor receptor. In vivo, silencing of SOCS-1 inhibited subcutaneous tumor growth and metastatic development in the lungs. Because SOCS-1 is expressed in most melanoma cell lines and bears a relation with tumor invasion, thickness, and stage of disease, the present results on the effects of SOCS-1 silencing in melanoma suggest that this regulating protein can be a target of cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...