Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(1): e0191692, 2018.
Article in English | MEDLINE | ID: mdl-29360883

ABSTRACT

Burden of pneumonia caused by Streptococcus pneumoniae remains high despite the availability of conjugate vaccines. Mucosal immunization targeting the lungs is an attractive alternative for the induction of local immune responses to improve protection against pneumonia. Our group had previously described the development of poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL) polymeric nanoparticles (NPs) adsorbed with Pneumococcal surface protein A from clade 4 (PspA4Pro) within L-leucine microcarriers (nanocomposite microparticles-NCMPs) for mucosal delivery targeting the lungs (NP/NCMP PspA4Pro). NP/NCMP PspA4Pro was now used for immunization of mice. Inoculation of this formulation induced anti-PspA4Pro IgG antibodies in serum and lungs. Analysis of binding of serum IgG to intact bacteria showed efficient binding to bacteria expressing PspA from clades 3, 4 and 5 (family 2), but no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Both mucosal immunization with NP/NCMP PspA4Pro and subcutaneous injection of the protein elicited partial protection against intranasal lethal pneumococcal challenge with a serotype 3 strain expressing PspA from clade 5 (PspA5). Although similar survival levels were observed for mucosal immunization with NP/NCMP PspA4Pro and subcutaneous immunization with purified protein, NP/NCMP PspA4Pro induced earlier control of the infection. Conversely, neither immunization with NP/NCMP PspA4Pro nor subcutaneous immunization with purified protein reduced bacterial burden in the lungs after challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Mucosal immunization with NP/NCMP PspA4Pro targeting the lungs is thus able to induce local and systemic antibodies, conferring protection only against a strain expressing PspA from the homologous family 2.


Subject(s)
Bacterial Proteins/administration & dosage , Immunity, Mucosal , Nanoparticles , Pneumonia, Bacterial/prevention & control , Adsorption , Animals , Bronchoalveolar Lavage Fluid , Enzyme-Linked Immunosorbent Assay , Female , Immunophenotyping , Mice , Mice, Inbred BALB C , Pneumonia, Bacterial/blood
2.
Appl Microbiol Biotechnol ; 101(6): 2305-2317, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27889801

ABSTRACT

Streptococcus pneumoniae is the main cause of pneumonia, meningitis, and other conditions that kill thousands of children every year worldwide. The replacement of pneumococcal serotypes among the vaccinated population has evidenced the need for new vaccines with broader coverage and driven the research for protein-based vaccines. Pneumococcal surface protein A (PspA) protects S. pneumoniae from the bactericidal effect of human apolactoferrin and prevents complement deposition. Several studies indicate that PspA is a very promising target for novel vaccine formulations. Here we describe a production and purification process for an untagged recombinant fragment of PspA from clade 4 (PspA4Pro), which has been shown to be cross-reactive with several PspA variants. PspA4Pro was obtained using lactose as inducer in Phytone auto-induction batch or glycerol limited fed-batch in 5-L bioreactor. The purification process includes two novel steps: (i) clarification using a cationic detergent to precipitate contaminant proteins, nucleic acids, and other negatively charged molecules as the lipopolysaccharide, which is the major endotoxin; and (ii) cryoprecipitation that eliminates aggregates and contaminants, which precipitate at -20 °C and pH 4.0, leaving PspA4Pro in the supernatant. The final process consisted of cell rupture in a continuous high-pressure homogenizer, clarification, anion exchange chromatography, cryoprecipitation, and cation exchange chromatography. This process avoided costly tag removal steps and recovered 35.3 ± 2.5% of PspA4Pro with 97.8 ± 0.36% purity and reduced endotoxin concentration by >99.9%. Circular dichroism and lactoferrin binding assay showed that PspA4Pro secondary structure and biological activity were preserved after purification and remained stable in a wide range of temperatures and pH values.


Subject(s)
Bacterial Proteins/isolation & purification , Escherichia coli/genetics , Liquid-Liquid Extraction/methods , Streptococcus pneumoniae/chemistry , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Batch Cell Culture Techniques , Bioreactors , Cloning, Molecular , Detergents/chemistry , Endotoxins/isolation & purification , Escherichia coli/chemistry , Escherichia coli/metabolism , Fermentation , Gene Expression , Glycerol/metabolism , Hydrogen-Ion Concentration , Kinetics , Lactoferrin/chemistry , Lactose/metabolism , Pressure , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Streptococcus pneumoniae/metabolism
3.
Int J Pharm ; 495(2): 903-12, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26387622

ABSTRACT

Pneumonia, caused by Streptococcus pneumoniae, mainly affects the immunocompromised, the very young and the old, and remains one of the leading causes of death. A steady rise in disease numbers from non-vaccine serotypes necessitates a new vaccine formulation that ideally has better antigen stability and integrity, does not require cold-chain and can be delivered non-invasively. In this study, a dry powder vaccine containing an important antigen of S. pneumoniae, pneumococcal surface protein A (PspA) that has shown cross-reactivity amongst serotypes to be delivered via the pulmonary route has been formulated. The formulation contains the antigen PspA adsorbed onto the surface of polymeric nanoparticles encapsulated in L-leucine microparticles that can be loaded into capsules and delivered via an inhaler. We have successfully synthesized particles of ∼150 nm and achieved ∼20 µg of PspA adsorption per mg of NPs. In addition, the spray-dried powders displayed a FPF of 74.31±1.32% and MMAD of 1.70±0.03 µm suggesting a broncho-alveolar lung deposition facilitating the uptake of the nanoparticles by dendritic cells. Also, the PspA released from the dry powders maintained antigen stability (SDS-PAGE), integrity (Circular dichroism) and activity (lactoferrin binding assay). Moreover, the released antigen also maintained its antigenicity as determined by ELISA.


Subject(s)
Antigens, Bacterial/administration & dosage , Bacterial Proteins/administration & dosage , Bacterial Proteins/immunology , Bacterial Vaccines/administration & dosage , Lung/metabolism , Nanoparticles/administration & dosage , Powders/administration & dosage , Administration, Inhalation , Adsorption , Antigens, Bacterial/immunology , Bacterial Vaccines/immunology , Cell Survival , Chemistry, Pharmaceutical/methods , Dendritic Cells/immunology , Drug Liberation , Drug Stability , Humans , Lactoferrin/immunology , Lung/cytology , Nanoparticles/adverse effects , Particle Size
4.
Anal Biochem ; 421(1): 250-5, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22178907

ABSTRACT

Streptococcus pneumoniae is a major cause of mortality in underdeveloped countries, where more than one million people die from pneumococcal disease every year. Vaccines are the most efficient method for preventing the infection and are based on the capsular polysaccharide (PS) protection. The serotype 14 is the most frequent in pediatric infections worldwide. This study aimed to establish a quantification protocol for PS present in culture broth samples of S. pneumoniae serotype 14 (PS14) and use this protocol for selection of the best PS14 producer strain. Phenol-sulfuric, HPSEC, competitive ELISA, and sandwich ELISA methods were tested for PS14 quantification. Sandwich ELISA was the method with the best reproducibility and sensitivity and the least susceptible to interferences. The quantification limit and detection limit of this method were 0.99 and 0.57 ng/mL, respectively. Statistical analysis was performed to calculate the coefficient of variation (CV) intraassay (1-3% intraplate and 2-6% interplate) and interassay (11-15%) and the reproducibility in different days (CV<20%). The sandwich ELISA allows us to select, among six strains evaluated, the strain 5287 as the best PS14 producer (11.68 mg PS14/biomass) and it was shown to be the best choice for measurement of pneumococcal polysaccharides in culture broth samples.


Subject(s)
Bacterial Capsules/analysis , Streptococcus pneumoniae/chemistry , Chromatography, High Pressure Liquid/methods , Culture Media , Enzyme-Linked Immunosorbent Assay/methods , Humans , Phenol , Serotyping , Species Specificity , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/growth & development , Streptococcus pneumoniae/pathogenicity , Sulfuric Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...