Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
AoB Plants ; 72015 Oct 03.
Article in English | MEDLINE | ID: mdl-26433707

ABSTRACT

Domestication is a continuous evolutionary process guided by humans. This process leads to divergence in characteristics such as behaviour, morphology or genetics, between wild and managed populations. Agaves have been important resources for Mesoamerican peoples since prehistory. Some species are domesticated and others vary in degree of domestication. Agave inaequidens Koch is used in central Mexico to produce mescal, and a management gradient from gathered wild and silvicultural populations, as well as cultivated plantations, has been documented. Significant morphological differences were reported among wild and managed populations, and a high phenotypic variation in cultivated populations composed of plants from different populations. We evaluated levels of genetic diversity and structure associated with management, hypothesizing that high morphological variation would be accompanied by high genetic diversity in populations with high gene flow and low genetic structure among managed and unmanaged populations. Wild, silvicultural and cultivated populations were studied, collecting tissue of 19-30 plants per population. Through 10 nuclear microsatellite loci, we compared population genetic parameters. We analysed partition of variation associated with management categories to estimate gene flow among populations. Agave inaequidens exhibits high levels of genetic diversity (He = 0.707) and moderate genetic structure (FST = 0.112). No differences were found in levels of genetic diversity among wild (He = 0.704), silviculturally managed (He = 0.733) and cultivated (He = 0.698) populations. Bayesian analysis indicated that five genetic clusters best fit the data, with genetic groups corresponding to habitats where populations grow rather than to management. Migration rates ranged from zero between two populations to markedly high among others (M = 0.73-35.25). Natural mechanisms of gene flow and the dynamic management of agave propagules among populations favour gene flow and the maintenance of high levels of variation within all populations. The slight differentiation associated with management indicates that domestication is in an incipient stage.

2.
J Ethnobiol Ethnomed ; 10: 66, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25227277

ABSTRACT

BACKGROUND: Agave inaequidens and A. hookeri are anciently used species for producing the fermented beverage 'pulque', food and fiber in central Mexico. A. inaequidens is wild and cultivated and A. hookeri only cultivated, A. inaequidens being its putative wild relative. We analysed purposes and mechanisms of artificial selection and phenotypic divergences between wild and managed populations of A. inaequidens and between them and A. hookeri, hypothesizing phenotypic divergence between wild and domesticated populations of A. inaequidens in characters associated to domestication, and that A. hookeri would be phenotypically similar to cultivated A. inaequidens. METHODS: We studied five wild and five cultivated populations of A. inaequidens, and three cultivated populations of A. hookeri. We interviewed agave managers documenting mechanisms of artificial selection, and measured 25 morphological characters. Morphological similarity and differentiation among plants and populations were analysed through multivariate methods and ANOVAs. RESULTS: People recognized 2-8 variants of A. inaequidens; for cultivation they select young plants collected in wild areas recognized as producing the best quality mescal agaves. Also, they collect seeds of the largest and most vigorous plants, sowing seeds in plant beds and then transplanting the most vigorous plantlets into plantations. Multivariate methods classified separately the wild and cultivated populations of A. inaequidens and these from A. hookeri, mainly because of characters related with plant and teeth size. The cultivated plants of A. inaequidens are significantly bigger with larger teeth than wild plants. A. hookeri are also significatly bigger plants with larger leaves but lower teeth density and size than A. inaequidens. Some cultivated plants of A. inaequidens were classified as A. hookeri, and nearly 10% of A. hookeri as cultivated A. inaequidens. Wild and cultivated populations of A. inaequidens differed in 13 characters, whereas A. hookeri differed in 23 characters with wild populations and only in 6 characters with cultivated populations of A. inaequidens. CONCLUSIONS: Divergence between wild and cultivated populations of A. inaequidens reflect artificial selection. A. hookeri is similar to the cultivated A. inaequidens, which supports the hypothesis that A. hookeri could be the extreme of a domestication gradient of a species complex.


Subject(s)
Agave , Agave/anatomy & histology , Agave/classification , Conservation of Natural Resources , Ethnobotany , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...