Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 385
Filter
2.
Article in English | MEDLINE | ID: mdl-39012742

ABSTRACT

4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive measurement technique capable of quantifying blood flow across the cardiovascular system. While practical use is limited by spatial resolution and image noise, incorporation of trained super-resolution (SR) networks has potential to enhance image quality post-scan. However, these efforts have predominantly been restricted to narrowly defined cardiovascular domains, with limited exploration of how SR performance extends across the cardiovascular system; a task aggravated by contrasting hemodynamic conditions apparent across the cardiovasculature. The aim of our study was therefore to explore the generalizability of SR 4D Flow MRI using a combination of existing super-resolution base models, novel heterogeneous training sets, and dedicated ensemble learning techniques; the latter-most being effectively used for improved domain adaption in other domains or modalities, however, with no previous exploration in the setting of 4D Flow MRI. With synthetic training data generated across three disparate domains (cardiac, aortic, cerebrovascular), varying convolutional base and ensemble learners were evaluated as a function of domain and architecture, quantifying performance on both in-silico and acquired in-vivo data from the same three domains. Results show that both bagging and stacking ensembling enhance SR performance across domains, accurately predicting high-resolution velocities from low-resolution input data in-silico. Likewise, optimized networks successfully recover native resolution velocities from downsampled in-vivo data, as well as show qualitative potential in generating denoised SR-images from clinicallevel input data. In conclusion, our work presents a viable approach for generalized SR 4D Flow MRI, with the novel use of ensemble learning in the setting of advanced fullfield flow imaging extending utility across various clinical areas of interest.

3.
Plant Biol (Stuttg) ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38924267

ABSTRACT

YABBY genes encode specific TFs of seed plants involved in development and formation of leaves, flowers, and fruit. In the present work, genome-wide and expression analyses of the YABBY gene family were performed in six species of the Fragaria genus: Fragaria × ananassa, F. daltoniana, F. nilgerrensis, F. pentaphylla, F. viridis, and F. vesca. The chromosomal location, synteny pattern, gene structure, and phylogenetic analyses were carried out. By combining RNA-seq data and RT-qPCR analysis we explored specific expression of YABBYs in F. × ananassa and F. vesca. We also analysed the promoter regions of FaYABBYs and performed MeJA application to F. × ananassa fruit to observe effects on gene expression. We identified and characterized 25 YABBY genes in F. × ananassa and six in each of the other five species, which belong to FIL/YAB3 (YABBY1), YAB2 (YABBY2), YAB5 (YABBY5), CRC, and INO clades previously described. Division of the YABBY1 clade into YABBY1.1 and YABBY1.2 subclades is reported. We observed differential expression according to tissue, where some FaYABBYs are expressed mainly in leaves and flowers and to a minor extent during fruit development of F. × ananassa. Specifically, the FaINO genes contain jasmonate-responsive cis-acting elements in their promoters which may be functional since FaINOs are upregulated in F. × ananassa fruit under MeJA treatment. This study suggests that YABBY TFs play an important role in the development- and environment-associated responses of the Fragaria genus.

4.
J Mol Cell Cardiol ; 192: 94-108, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754551

ABSTRACT

While exercise-mediated vasoregulation in the myocardium is understood to be governed by autonomic, myogenic, and metabolic-mediated mechanisms, we do not yet understand the spatial heterogeneity of vasodilation or its effects on microvascular flow patterns and oxygen delivery. This study uses a simulation and modeling approach to explore the mechanisms underlying the recruitment of myocardial perfusion and oxygen delivery in exercise. The simulation approach integrates model components representing: whole-body cardiovascular hemodynamics, cardiac mechanics and myocardial work; myocardial perfusion; and myocardial oxygen transport. Integrating these systems together, model simulations reveal: (1.) To match expected flow and transmural flow ratios at increasing levels of exercise, a greater degree of vasodilation must occur in the subendocardium compared to the subepicardium. (2.) Oxygen extraction and venous oxygenation are predicted to substantially decrease with increasing exercise level preferentially in the subendocardium, suggesting that an oxygen-dependent error signal driving metabolic mediated recruitment of flow would be operative only in the subendocardium. (3.) Under baseline physiological conditions approximately 4% of the oxygen delivered to the subendocardium may be supplied via retrograde flow from coronary veins.


Subject(s)
Computer Simulation , Coronary Circulation , Exercise , Models, Cardiovascular , Myocardium , Oxygen , Exercise/physiology , Humans , Oxygen/metabolism , Myocardium/metabolism , Hemodynamics , Oxygen Consumption , Heart/physiology , Vasodilation
5.
J Mol Cell Cardiol ; 190: 82-91, 2024 May.
Article in English | MEDLINE | ID: mdl-38608928

ABSTRACT

The coronary circulation has the inherent ability to maintain myocardial perfusion constant over a wide range of perfusion pressures. The phenomenon of pressure-flow autoregulation is crucial in response to flow-limiting atherosclerotic lesions which diminish coronary driving pressure and increase risk of myocardial ischemia and infarction. Despite well over half a century of devoted research, understanding of the mechanisms responsible for autoregulation remains one of the most fundamental and contested questions in the field today. The purpose of this review is to highlight current knowledge regarding the complex interrelationship between the pathways and mechanisms proposed to dictate the degree of coronary pressure-flow autoregulation. Our group recently likened the intertwined nature of the essential determinants of coronary flow control to the symbolically unsolvable "Gordian knot". To further efforts to unravel the autoregulatory "knot", we consider recent challenges to the local metabolic and myogenic hypotheses and the complicated dynamic structural and functional heterogeneity unique to the heart and coronary circulation. Additional consideration is given to interrogation of putative mediators, role of K+ and Ca2+ channels, and recent insights from computational modeling studies. Improved understanding of how specific vasoactive mediators, pathways, and underlying disease states influence coronary pressure-flow relations stands to significantly reduce morbidity and mortality for what remains the leading cause of death worldwide.


Subject(s)
Coronary Circulation , Homeostasis , Humans , Coronary Circulation/physiology , Animals , Blood Pressure/physiology , Coronary Vessels/physiopathology , Hemodynamics
6.
Langmuir ; 40(9): 4824-4830, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38381859

ABSTRACT

This study presents a comparison of H2 and D2 passivation on Si(100) under simultaneous Xe+ ion bombardment. The impact of Xe+ ions causes significant damage to the substrate surface, leading to an increase in H2 (D2) retention as Si-H (Si-D) bonds. The ion bombardment conditions are precisely controlled using a Kaufman ion gun. The atomic concentrations on the surface of the sample were investigated by quasi-in situ X-ray photoelectron spectroscopy. A simple methodology is employed to estimate the H (D) chemical concentration and the cover ratio of the sample, with regard to the oxygen concentration through residual water chemisorption present in the vacuum vessel. Differences in passivation are expected when using H2 or D2 atmospheres because their retained scission energies and physisorption properties differ. The results indicate an increase of the sticking coefficient for D2 and H2 under the ion bombardment. It is also found that the flux of H2 (D2) impinging on the surface contributes to play an important role in the whole process. Finally, a model is proposed to describe the phenomenon of the passivation of Si under Xe+ ion bombardment in the presence of H2 (D2).

7.
Front Bioeng Biotechnol ; 12: 1302063, 2024.
Article in English | MEDLINE | ID: mdl-38314350

ABSTRACT

Introduction: Iliac vein compression syndrome (IVCS) is present in over 20% of the population and is associated with left leg pain, swelling, and thrombosis. IVCS symptoms are thought to be induced by altered pelvic hemodynamics, however, there currently exists a knowledge gap on the hemodynamic differences between IVCS and healthy patients. To elucidate those differences, we carried out a patient-specific, computational modeling comparative study. Methods: Computed tomography and ultrasound velocity and area data were used to build and validate computational models for a cohort of IVCS (N = 4, Subject group) and control (N = 4, Control group) patients. Flow, cross-sectional area, and shear rate were compared between the right common iliac vein (RCIV) and left common iliac vein (LCIV) for each group and between the Subject and Control groups for the same vessel. Results: For the IVCS patients, LCIV mean shear rate was higher than RCIV mean shear rate (550 ± 103 s-1 vs. 113 ± 48 s-1, p = 0.0009). Furthermore, LCIV mean shear rate was higher in the Subject group than in the Control group (550 ± 103 s-1 vs. 75 ± 37 s-1, p = 0.0001). Lastly, the LCIV/RCIV shear rate ratio was 4.6 times greater in the Subject group than in the Control group (6.56 ± 0.9 vs. 1.43 ± 0.6, p = 0.00008). Discussion: Our analyses revealed that IVCS patients have elevated shear rates which may explain a higher thrombosis risk and suggest that their thrombus initiation process may share aspects of arterial thrombosis. We have identified hemodynamic metrics that revealed profound differences between IVCS patients and Controls, and between RCIV and LCIV in the IVCS patients. Based on these metrics, we propose that non-invasive measurement of shear rate may aid with stratification of patients with moderate compression in which treatment is highly variable. More investigation is needed to assess the prognostic value of shear rate and shear rate ratio as clinical metrics and to understand the mechanisms of thrombus formation in IVCS patients.

8.
Ann Biomed Eng ; 52(4): 1051-1066, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38383871

ABSTRACT

Systemic hypertension is a strong risk factor for cardiovascular, neurovascular, and renovascular diseases. Central artery stiffness is both an initiator and indicator of hypertension, thus revealing a critical relationship between the wall mechanics and hemodynamics. Mice have emerged as a critical animal model for studying effects of hypertension and much has been learned. Regardless of the specific mouse model, data on changes in cardiac function and hemodynamics are necessarily measured under anesthesia. Here, we present a new experimental-computational workflow to estimate awake cardiovascular conditions from anesthetized data, which was then used to quantify effects of chronic angiotensin II-induced hypertension relative to normotension in wild-type mice. We found that isoflurane anesthesia had a greater impact on depressing hemodynamics in angiotensin II-infused mice than in controls, which led to unexpected results when comparing anesthetized results between the two groups of mice. Through comparison of the awake simulations, however, in vivo relevant effects of angiotensin II-infusion on global and regional vascular structure, properties, and hemodynamics were found to be qualitatively consistent with expectations. Specifically, we found an increased in vivo vascular stiffness in the descending thoracic aorta and suprarenal abdominal aorta, leading to increases in pulse pressure in the distal aorta. These insights allow characterization of the impact of regionally varying vascular remodeling on hemodynamics and mouse-to-mouse variations due to induced hypertension.


Subject(s)
Anesthesia , Hypertension , Mice , Animals , Angiotensin II/pharmacology , Hypertension/chemically induced , Hemodynamics , Arteries , Blood Pressure , Aorta, Abdominal
9.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1559696

ABSTRACT

1). La vida de Ludwig van Beethoven experimentó un cambio existencial al morir su hermano y dejar a su hijo Karl en tutoría compartida con su madre Johanna. 2). Casi sin haber tenido relación con su sobrino, se desencadena una necesidad emocional intensa e inesperada de convertirse en su único tutor, objetivo que consigue derrotando legalmente a su madre. 3). La relación Beethoven-Karl se desarrolla plagada de disputas, vigilancia, exigencias, control, como si el compositor viviera por vez primera lo que siempre se había negado, llegar a ser padre. 4). El intento de suicidio del sobrino le señala a Beethoven que convertirse en padre significa permitir que el hijo llegue a ser diferente a las arrogantes y desmesuradas ambiciones y expectativas personales, pero esta señal extrema fue insuficiente para hacerle entender que el otro siempre es un peligro porque muestra una verdad oculta intolerable y dolorosa del propio sí-mismo.


Ludwig van Beethoven's life underwent an existential change when his brother died and left his son Karl in shared tutorship with his mother Johanna. 2. Almost without having had any relationship with his nephew, an intense and unexpected emotional need to become his sole guardian is triggered, an objective that he achieves by legally defeating his mother. 3. The Beethoven-Karl relationship develops plagued by disputes, surveillance, demands, control, as if the composer were experiencing for the first time what he had always denied himself, becoming a father.4. The nephew's suicide attempt points out to Beethoven that becoming a father means allowing the son to become different from the arrogant and inordinate personal ambitions and expectations, but this extreme signal was insufficient to make him understand that the other is always a danger because it shows a hidden and painful truth of one´s own self.

10.
ArXiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045482

ABSTRACT

4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive measurement technique capable of quantifying blood flow across the cardiovascular system. While practical use is limited by spatial resolution and image noise, incorporation of trained super-resolution (SR) networks has potential to enhance image quality post-scan. However, these efforts have predominantly been restricted to narrowly defined cardiovascular domains, with limited exploration of how SR performance extends across the cardiovascular system; a task aggravated by contrasting hemodynamic conditions apparent across the cardiovasculature. The aim of our study was to explore the generalizability of SR 4D Flow MRI using a combination of heterogeneous training sets and dedicated ensemble learning. With synthetic training data generated across three disparate domains (cardiac, aortic, cerebrovascular), varying convolutional base and ensemble learners were evaluated as a function of domain and architecture, quantifying performance on both in-silico and acquired in-vivo data from the same three domains. Results show that both bagging and stacking ensembling enhance SR performance across domains, accurately predicting high-resolution velocities from low-resolution input data in-silico. Likewise, optimized networks successfully recover native resolution velocities from downsampled in-vivo data, as well as show qualitative potential in generating denoised SR-images from clinicallevel input data. In conclusion, our work presents a viable approach for generalized SR 4D Flow MRI, with ensemble learning extending utility across various clinical areas of interest.

11.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1528846

ABSTRACT

El fibro-odontoma ameloblástico (FOA) es una neoplasia odontogénica benigna poco frecuente que afecta a los huesos maxilares. Posee un componente de tejido epitelial y ectomesénquima, por lo que hasta hace un tiempo era incluido dentro de la clasificación de tumores odontogénicos de origen mixto. Actualmente estas lesiones no están incorporadas en la última clasificación de los tumores odontogénicos y huesos maxilofaciales de la organización mundial de la salud y son consideradas como un odontoma en desarrollo. Clínicamente se presenta con mayor frecuencia en mandíbula y asociado a la falta de erupción de un diente. Presentamos el caso clínico de un niño de 6 años de edad que acudió a nuestro servicio maxilofacial por la no erupción de un diente temporal mandibular. El cuadro clínico y las investigaciones confirmaron la hipótesis diagnóstica de FOA con una impactación del segundo molar temporal inferior izquierdo hacia el margen basilar mandibular y el germen dentario del premolar por sobre la corona del diente retenido.


Ameloblastic fibro-odontoma (AFO) is a rare benign odontogenic neoplasm that affects the maxillary bones. It possesses both an epithelial and ectomesenchymal component, for which it was previously included in the classification of mixed odontogenic tumors. The AFO is currently not included in the latest classification of odontogenic and maxillofacial bone tumors, and is considered a developing odontoma. Clinically, it predominantly manifests in the mandible, in frequent association with the lack of eruption of a tooth. In this article, the authors present a case of a 6 year old boy with the query of an unerupted primary mandibular tooth. Both the clinical examination and the subsequent investigation confirmed the diagnostic hypothesis of an AFO with subsequent impaction of the primary left mandibular second molar, which was displaced against the base of the mandible, and the tooth germ for the left mandibular second premolar positionedover the crown of the retained tooth.

12.
Trop Anim Health Prod ; 56(1): 20, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110670

ABSTRACT

Argentina is a small player in the global pork market, contributing only 0.7% of the total production. With increasing global demand for meat, there is an opportunity for countries with an agricultural profile to grow their pork production. However, there is a need to understand the current state of the pork production sector in all aspects to inform decision-making. The aim of this study was to genetically characterize pig herds from different production strata in the primary region for pork production in the country. For this purpose, phylogenetic and genetic variability analyses were performed using the mitochondrial control region marker (n=95 pig samples). Moreover, genotyping of ryr1 and PRKAG3 genes (n=108 pig samples) were performed to evaluate the frequency of deleterious alleles for meat quality traits in the region. The results showed high levels of genetic variability in the pig herds (Hd= 0.840 ± 0.031 and π= 0.010 ± 0.001), with a creole sow and Iberian lineage standing out in the phylogeny. The genotyping of the ryr1 marker revealed the presence of the deleterious t allele in all analyzed strata. However, the RN-allele of the PRKAG3 gene was detected only in the two lower strata. This study represents the first analysis of the phylogenetic relationships among domestic pigs from Argentina and provides an initial assessment of genetic variability in the region. Additionally, the results present, for the first time, the frequency of deleterious alleles for pig production in the productive core area, demonstrating their prevalence.


Subject(s)
Ryanodine Receptor Calcium Release Channel , Sus scrofa , Swine/genetics , Animals , Female , Sus scrofa/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Argentina , Phylogeny , Meat/analysis
13.
Sci Rep ; 13(1): 17603, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845232

ABSTRACT

We present a multi-stage neural network approach for 3D reconstruction of coronary artery trees from uncalibrated 2D X-ray angiography images. This method uses several binarized images from different angles to reconstruct a 3D coronary tree without any knowledge of image acquisition parameters. The method consists of a single backbone network and separate stages for vessel centerline and radius reconstruction. The output is an analytical matrix representation of the coronary tree suitable for downstream applications such as hemodynamic modeling of local vessel narrowing (i.e., stenosis). The network was trained using a dataset of synthetic coronary trees from a vessel generator informed by both clinical image data and literature values on coronary anatomy. Our multi-stage network achieved sub-pixel accuracy in reconstructing vessel radius (RMSE = 0.16 ± 0.07 mm) and stenosis radius (MAE = 0.27 ± 0.18 mm), the most important feature used to inform diagnostic decisions. The network also led to 52% and 38% reduction in vessel centerline reconstruction errors compared to a single-stage network and projective geometry-based methods, respectively. Our method demonstrated robustness to overcome challenges such as vessel foreshortening or overlap in the input images. This work is an important step towards automated analysis of anatomic and functional disease severity in the coronary arteries.


Subject(s)
Imaging, Three-Dimensional , Neural Networks, Computer , Humans , Imaging, Three-Dimensional/methods , Coronary Angiography/methods , Constriction, Pathologic , X-Rays , Coronary Vessels/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods
15.
Animals (Basel) ; 13(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37508034

ABSTRACT

The term wasting refers to a clinical sign used to describe a physical condition characterized by growth retardation, usually of multifactorial origin. The objective of the present study was to describe for the first time a pathological process characterized by forebrain neuropil vacuolization in pigs showing wasting without conspicuous neurological signs. To characterize the lesions pathologically, affected and non-affected pigs from eight of these farms were investigated. Histologically, the most consistent lesion was neuropil vacuolization of the prosencephalon, mainly located in the thalamic nuclei and in the transition between the white and grey matter of the neocortex (40/56 in sick and 4/30 in healthy pigs). In the most severe cases, the vacuolation also involved the midbrain, cerebellar nuclei and, to a lesser extent, the medulla oblongata. Vacuolization of the forebrain was associated with pigs experiencing marked emaciation and growth retardation. Although the specific cause of the present case remained unknown, the preventive use of multivitamin and mineral complexes in drinking water ameliorated the condition, strongly suggesting a metabolic origin of the observed condition.

16.
J Clin Med ; 12(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37445507

ABSTRACT

The aorta is in constant motion due to the combination of cyclic loading and unloading with its mechanical coupling to the contractile left ventricle (LV) myocardium. This aortic root motion has been proposed as a marker for aortic disease progression. Aortic root motion extraction techniques have been mostly based on 2D image analysis and have thus lacked a rigorous description of the different components of aortic root motion (e.g., axial versus in-plane). In this study, we utilized a novel technique termed vascular deformation mapping (VDM(D)) to extract 3D aortic root motion from dynamic computed tomography angiography images. Aortic root displacement (axial and in-plane), area ratio and distensibility, axial tilt, aortic rotation, and LV/Ao angles were extracted and compared for four different subject groups: non-aneurysmal, TAA, Marfan, and repair. The repair group showed smaller aortic root displacement, aortic rotation, and distensibility than the other groups. The repair group was also the only group that showed a larger relative in-plane displacement than relative axial displacement. The Marfan group showed the largest heterogeneity in aortic root displacement, distensibility, and age. The non-aneurysmal group showed a negative correlation between age and distensibility, consistent with previous studies. Our results revealed a strong positive correlation between LV/Ao angle and relative axial displacement and a strong negative correlation between LV/Ao angle and relative in-plane displacement. VDM(D)-derived 3D aortic root motion can be used in future studies to define improved boundary conditions for aortic wall stress analysis.

18.
J Vasc Surg Venous Lymphat Disord ; 11(5): 1023-1033.e5, 2023 09.
Article in English | MEDLINE | ID: mdl-37353157

ABSTRACT

OBJECTIVE: Elevated shear rates are known to play a role in arterial thrombosis; however, shear rates have not been thoroughly investigated in patients with iliac vein compression syndrome (IVCS) owing to imaging limitations and assumptions on the low shear nature of venous flows. This study was undertaken to develop a standardized protocol that quantifies IVCS shear rates and can aid in the diagnosis and treatment of patients with moderate yet symptomatic compression. METHODS: Study patients with and without IVCS had their iliac vein hemodynamics measured via duplex ultrasound (US) at two of the following three vessel locations: infrarenal inferior vena cava (IVC), right common iliac vein, and left common iliac vein, in addition to acquiring data at the right and left external iliac veins. US velocity spectra were multiplied by a weighted cross-sectional area calculated from US and computed tomography (CT) data to create flow waveforms. Flow waveforms were then scaled to enforce conservation of flow across the IVC and common iliac veins. A three-dimensional (3D), patient-specific model of the iliac vein anatomy was constructed from CT and US examination. Flow waveforms and the 3D model were used as a basis to run a computational fluid dynamics (CFD) simulation. Owing to collateral vessel flow and discrepancies between CT and US area measurements, flows in internal iliac veins and cross-sectional areas of the common iliac veins were calibrated iteratively against target common iliac flow. Simulation results on mean velocity were validated against US data at measurement locations. Simulation results were postprocessed to derive spatial and temporal values of quantities such as velocity and shear rate. RESULTS: Using our modeling protocol, we were able to build CFD models of the iliac veins that matched common iliac flow splits within 2% and measured US velocities within 10%. Proof-of-concept analyses (1 subject, 1 control) have revealed that patients with IVCS may experience elevated shear rates in the compressed left common iliac vein, more typical of the arterial rather than the venous circulation. These results encourage us to extend this protocol to a larger group of patients with IVCS and controls. CONCLUSIONS: We developed a protocol that obtains hemodynamic measurements of the IVC and iliac veins from US, creates patient-specific 3D reconstructions of the venous anatomy using CT and US examinations, and computes shear rates using calibrated CFD methods. Proof-of-concept results have indicated that patients with IVCS may experience elevated shear rates in the compressed left common iliac vein. Larger cohorts are needed to assess the relationship between venous compression and shear rates in patients with IVCS as compared with controls with noncompressed iliac veins. Further studies using this protocol may also give promising insights into whether or not to treat patients with moderate, yet symptomatic compression.


Subject(s)
May-Thurner Syndrome , Thrombosis , Humans , May-Thurner Syndrome/diagnostic imaging , May-Thurner Syndrome/therapy , Hydrodynamics , Hemodynamics , Iliac Vein/diagnostic imaging , Ultrasonography, Doppler, Duplex
19.
Med Image Anal ; 88: 102831, 2023 08.
Article in English | MEDLINE | ID: mdl-37244143

ABSTRACT

The development of cerebrovascular disease is tightly coupled to regional changes in intracranial flow and relative pressure. Image-based assessment using phase contrast magnetic resonance imaging has particular promise for non-invasive full-field mapping of cerebrovascular hemodynamics. However, estimations are complicated by the narrow and tortuous intracranial vasculature, with accurate image-based quantification directly dependent on sufficient spatial resolution. Further, extended scan times are required for high-resolution acquisitions, and most clinical acquisitions are performed at comparably low resolution (>1 mm) where biases have been observed with regard to the quantification of both flow and relative pressure. The aim of our study was to develop an approach for quantitative intracranial super-resolution 4D Flow MRI, with effective resolution enhancement achieved by a dedicated deep residual network, and with accurate quantification of functional relative pressures achieved by subsequent physics-informed image processing. To achieve this, our two-step approach was trained and validated in a patient-specific in-silico cohort, showing good accuracy in estimating velocity (relative error: 15.0 ± 0.1%, mean absolute error (MAE): 0.07 ± 0.06 m/s, and cosine similarity: 0.99 ± 0.06 at peak velocity) and flow (relative error: 6.6 ± 4.7%, root mean square error (RMSE): 0.56 mL/s at peak flow), and with the coupled physics-informed image analysis allowing for maintained recovery of functional relative pressure throughout the circle of Willis (relative error: 11.0 ± 7.3%, RMSE: 0.3 ± 0.2 mmHg). Furthermore, the quantitative super-resolution approach is applied to an in-vivo volunteer cohort, effectively generating intracranial flow images at <0.5 mm resolution and showing reduced low-resolution bias in relative pressure estimation. Our work thus presents a promising two-step approach to non-invasively quantify cerebrovascular hemodynamics, being applicable to dedicated clinical cohorts in the future.


Subject(s)
Deep Learning , Humans , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Hemodynamics , Blood Flow Velocity , Imaging, Three-Dimensional/methods , Image Enhancement/methods
20.
Basic Res Cardiol ; 118(1): 12, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36988670

ABSTRACT

The coronary circulation has an innate ability to maintain constant blood flow over a wide range of perfusion pressures. However, the mechanisms responsible for coronary autoregulation remain a fundamental and highly contested question. This study interrogated the local metabolic hypothesis of autoregulation by testing the hypothesis that hypoxemia-induced exaggeration of the metabolic error signal improves the autoregulatory response. Experiments were performed on open-chest anesthetized swine during stepwise changes in coronary perfusion pressure (CPP) from 140 to 40 mmHg under normoxic (n = 15) and hypoxemic (n = 8) conditions, in the absence and presence of dobutamine-induced increases in myocardial oxygen consumption (MVO2) (n = 5-7). Hypoxemia (PaO2 < 40 mmHg) decreased coronary venous PO2 (CvPO2) ~ 30% (P < 0.001) and increased coronary blood flow ~ 100% (P < 0.001), sufficient to maintain myocardial oxygen delivery (P = 0.14) over a wide range of CPPs. Autoregulatory responsiveness during hypoxemia-induced reductions in CvPO2 were associated with increases of autoregulatory gain (Gc; P = 0.033) but not slope (P = 0.585) over a CPP range of 120 to 60 mmHg. Preservation of autoregulatory Gc (P = 0.069) and slope (P = 0.264) was observed during dobutamine administration ± hypoxemia. Reductions in coronary resistance in response to decreases in CPP predominantly occurred below CvPO2 values of ~ 25 mmHg, irrespective of underlying vasomotor reserve. These findings support the presence of an autoregulatory threshold under which oxygen-sensing pathway(s) act to preserve sufficient myocardial oxygen delivery as CPP is reduced during increases in MVO2 and/or reductions in arterial oxygen content.


Subject(s)
Dobutamine , Oxygen , Swine , Animals , Blood Pressure , Dobutamine/pharmacology , Myocardium/metabolism , Coronary Circulation/physiology , Homeostasis/physiology , Oxygen Consumption/physiology , Hypoxia , Perfusion
SELECTION OF CITATIONS
SEARCH DETAIL
...