Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bull Entomol Res ; 106(6): 801-808, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27573283

ABSTRACT

Asexual reproduction is very common in invasive insect pest. In the recent years, increasing evidences have shown that some invasive asexual lineages display an outstanding capacity to predominate in space and persist on time (superclones). However, little is known about the host-use behavior of these superclones. The English grain aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) is one of the major pests of cereals worldwide. Chilean populations of the grain aphid are characterized by a high degree of heterozygosity and low genotypic variability across regions and years, with only four predominant superclone genotypes representing nearly 90% of populations. In this study, (1) the reproductive performance and (2) the probing behavior followed a host shift of one superclone and one non-superclone of S. avenae, were compared. The host plant in the superclone did not affect the reproductive performance, while in the non-superclone was lower on highly defended wheat seedling. The experimental switching of the host plants from barley (without chemical defenses) to two wheat species with low and high levels of chemical defenses, revealed that superclone exhibited a flexible probing activities related to access of sieve elements, while the non-superclone exhibited rigid responses. These findings are consistent with the pattern of occurrence of these genotypes in the field on cereals with different plant defenses (e.g. benzoxazinoids). These responses are discussed on the view of developing new strategies for the management in invasive populations of aphid pest species.


Subject(s)
Adaptation, Physiological , Aphids/genetics , Reproduction, Asexual , Animals , Aphids/physiology , Edible Grain , Feeding Behavior , Genetic Variation , Genotype , Heterozygote , Introduced Species , Species Specificity
2.
Mol Ecol ; 23(24): 5998-6010, 2014 12.
Article in English | MEDLINE | ID: mdl-25492593

ABSTRACT

Blue whales (Balaenoptera musculus) were among the most intensively exploited species of whales in the world. As a consequence of this intense exploitation, blue whale sightings off the coast of Chile were uncommon by the end of the 20th century. In 2004, a feeding and nursing ground was reported in southern Chile (SCh). With the aim to investigate the genetic identity and relationship of these Chilean blue whales to those in other Southern Hemisphere areas, 60 biopsy samples were collected from blue whales in SCh between 2003 and 2009. These samples were genotyped at seven microsatellite loci and the mitochondrial control region was sequenced, allowing us to identify 52 individuals. To investigate the genetic identity of this suspected remnant population, we compared these 52 individuals to blue whales from Antarctica (ANT, n = 96), Northern Chile (NCh, n = 19) and the eastern tropical Pacific (ETP, n = 31). No significant differentiation in haplotype frequencies (mtDNA) or among genotypes (nDNA) was found between SCh, NCh and ETP, while significant differences were found between those three areas and Antarctica for both the mitochondrial and microsatellite analyses. Our results suggest at least two breeding population units or subspecies exist, which is also supported by other lines of evidence such as morphometrics and acoustics. The lack of differences detected between SCh/NCh/ETP areas supports the hypothesis that eastern South Pacific blue whales are using the ETP area as a possible breeding area. Considering the small population sizes previously reported for the SCh area, additional conservation measures and monitoring of this population should be developed and prioritized.


Subject(s)
Balaenoptera/genetics , Genetics, Population , Animal Migration , Animals , Antarctic Regions , Bayes Theorem , Cell Nucleus/genetics , Chile , Cluster Analysis , DNA, Mitochondrial/genetics , Female , Gene Flow , Genetic Variation , Genotype , Haplotypes , Male , Microsatellite Repeats , Pacific Ocean , Sequence Analysis, DNA
3.
Bull Entomol Res ; 104(2): 182-94, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24484894

ABSTRACT

The seasonal dynamics of neutral genetic diversity and the insecticide resistance mechanisms of insect pests at the farm scale are still poorly documented. Here this was addressed in the green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae) in Central Chile. Samples were collected from an insecticide sprayed peach (Prunus persica L.) orchard (primary host), and a sweet-pepper (Capsicum annum var. grossum L.) field (secondary host). In addition, aphids from weeds (secondary hosts) growing among these crops were also sampled. Many unique multilocus genotypes were found on peach trees, while secondary hosts were colonized mostly by the six most common genotypes, which were predominantly sensitive to insecticides. In both fields, a small but significant genetic differentiation was found between aphids on the crops vs. their weeds. Within-season comparisons showed genetic differentiation between early and late season samples from peach, as well as for weeds in the peach orchard. The knock-down resistance (kdr) mutation was detected mostly in the heterozygote state, often associated with modified acetylcholinesterase throughout the season for both crops. This mutation was found in high frequency, mainly in the peach orchard. The super-kdr mutation was found in very low frequencies in both crops. This study provides farm-scale evidence that the aphid M. persicae can be composed of slightly different genetic groups between contiguous populations of primary and secondary hosts exhibiting different dynamics of insecticide resistance through the growing season.


Subject(s)
Aphids/genetics , Insecticide Resistance/genetics , Animals , Capsicum , Chile , Female , Genetic Variation , Genotype , Herbivory , Prunus
4.
J Insect Physiol ; 57(7): 986-94, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21539843

ABSTRACT

Cyclically parthenogenetic animals such as aphids are able alternating sexual and asexual reproduction during its life cycle, and represent good models for studying short-term evolutionary consequences of sex. In aphids, different morphs, whether sexual or asexual, winged or wingless, are produced in response to specific environmental cues. The production of these morphs could imply a differential energy investment between the two reproductive phases (i.e., sexual and asexual), which can also be interpreted in terms of changes in genetic variation and/or trade-offs between the associated traits. In this study we compared the G-matrices of energy metabolism, life-history traits and morph production in 10 clonal lineages (genotypes) of the pea aphid, Acyrthosiphon pisum, during both sexual and asexual phases. The heritabilities (broad-sense) were significant for almost all traits in both phases; however the only significant genetic correlation we found was a positive correlation between resting metabolic rate and production of winged parthenogenetic females during the asexual phase. These results suggest the pea aphid shows some lineage specialization in terms of energy costs, but a higher specialization in the production of the different morphs (e.g., winged parthenogenetic females). Moreover, the production of winged females during the asexual phase appears to be more costly than wingless females. Finally, the structures of genetic variance-covariance matrices differed between both phases. These differences were mainly due to the correlation between resting metabolic rate and winged parthenogenetic females in the asexual phase. This structural difference would be indicating that energy allocation rules changes between phases, emphasizing the dispersion role of asexual morphs.


Subject(s)
Aphids/genetics , Aphids/metabolism , Genetic Variation , Animals , Aphids/growth & development , Biological Evolution , Energy Metabolism , Female , Genotype , Male , Parthenogenesis , Reproduction
5.
J Econ Entomol ; 104(1): 258-65, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21404866

ABSTRACT

The horn fly, Haematobia irritans (L.) (Diptera: Muscidae), was introduced to Chile in the beginning of the 1990s. Since its introduction, farmers have controlled this pest almost exclusively with insecticides. To understand the consequences of different control strategies on the development of insecticide resistance and their persistence, a field survey was conducted at eight farms in the south of Chile to characterize insecticide resistance in field populations and resistance mechanisms. Horn fly samples were assayed to determine levels of resistance to pyrethroids and diazinon, genotyped for kdr and HialphaE7 mutations, and tested for general esterase activity. All field populations, including ones that were not treated with insecticides for the past 5 yr, showed high levels of cypermethrin resistance and high frequencies of the kdr mutation. None of the fly populations demonstrated resistance to diazinon and the HialphaE7 mutation was not detected in any of the fly samples. Esterase activities in all populations were comparable to those found in the susceptible reference strain. The findings of high frequencies of homozygous resistant and heterozygous individuals both in insecticide treated horn fly populations and in the untreated fly populations suggests complex interactions among field populations of the horn fly in Chile.


Subject(s)
Insecticide Resistance , Insecticides , Muscidae , Animals , Cattle , Chile , Diazinon , Esterases/metabolism , Genotype , Muscidae/enzymology , Pyrethrins
6.
Mol Ecol ; 19(21): 4738-52, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20958814

ABSTRACT

Biological invasions are rapid evolutionary events in which populations are usually subject to a founder event during introduction followed by rapid adaptation to the new environment. Molecular tools and Bayesian approaches have shown their utility in exploring different evolutionary scenarios regarding the invasion routes of introduced species. We examined the situation for the tobacco aphid, Myzus persicae nicotianae, a recently introduced aphid species in Chile. Using seven microsatellite loci and approximate Bayesian computation, we studied populations of the tobacco aphid sampled from several American and European countries, identifying the most likely source populations and tracking the route of introduction to Chile. Our population genetic data are consistent with available historical information, pointing to an introduction route of the tobacco aphid from Europe and/or from other putative populations (e.g. Asia) with subsequent introduction through North America to South America. Evidence of multiple introductions to North America from different genetic pools, with successive loss of genetic diversity from Europe towards North America and a strong bottleneck during the southward introduction to South America, was also found. Additionally, we examined the special case of a widespread multilocus genotype that was found in all American countries examined. This case provides further evidence for the existence of highly successful genotypes or 'superclones' in asexually reproducing organisms.


Subject(s)
Aphids/genetics , Genetic Variation , Genetics, Population , Introduced Species , Animals , Argentina , Bayes Theorem , Brazil , Chile , Founder Effect , France , Genotype , Greece , Microsatellite Repeats , Models, Biological , Multilocus Sequence Typing , Sequence Analysis, DNA , United States
7.
J Evol Biol ; 23(11): 2474-83, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20874850

ABSTRACT

Induced defences are a typical case of phenotypic plasticity, involving benefits for 'plastic' phenotypes under environments with variable degree of stress. Defence induction, in turn, could be energetically expensive incurring costs on growth and reproduction. In this study, we investigated the genetic variation and induction of detoxification enzymes mediated by wheat chemical defences (hydroxamic acids; Hx), and their metabolic and fitness costs using five multilocus genotypes of the grain aphid (Sitobion avenae). Cytochrome P450 monooxygenases and glutathione S-transferases activities were seen to increase with Hx levels, whereas esterases activity and standard metabolic rate increased in wheat hosts with low Hx levels. Additionally, the intrinsic rate of increase (a fitness proxy) increased in highly defended hosts. However, we did not find significant genetic variation or genotype-host interaction for any studied trait. Therefore, aphids feeding on host plants with elevated chemical defences appeared to reduce their detoxification costs and to increase their reproductive performance, which we interpret as a novel adaptation to defended plants. In brief, this study supports the notion that aphids perform better on highly defended host plants, probably related to the selective pressures during the colonization of New World agroecosystems, characterized by highly defended host plants.


Subject(s)
Adaptation, Biological/physiology , Aphids/physiology , Environment , Enzyme Induction/genetics , Genetic Variation , Phenotype , Triticum/parasitology , Adaptation, Biological/genetics , Analysis of Variance , Animals , Aphids/enzymology , Aphids/genetics , Basal Metabolism , Chile , Cytochrome P-450 Enzyme System/metabolism , Enzyme Induction/drug effects , Gene Frequency , Glutathione Transferase/metabolism , Hydroxamic Acids/pharmacology , Microsatellite Repeats/genetics , Triticum/metabolism
8.
Heredity (Edinb) ; 100(4): 374-81, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18212808

ABSTRACT

One of the most important factors that determine the evolutionary trajectory of a suite of traits in a population is the structure of the genetic variance-covariance matrix (G). We studied the cyclically parthenogenetic aphid Rhopalosiphum padi, whose populations exhibit two types of reproductive lineages respectively specialized in sexuality (that is, cyclically parthenogenetic lineages) and in asexuality (that is, obligate parthenogenetic lineages). We compared the quantitative genetics of life histories in these two lineage types. Our results suggest that both, the elements and the whole structure of the resulting G matrices differ in the very short term, between lineage types. This would involve the evolution toward different evolutionary optima in the same population, depending on whether sexual or asexual lineages predominate. Since sexual and asexual lineages vary seasonally in their abundance, a fluctuating selective regime has been proposed for this species, which would contribute to the maintenance of the reproductive polymorphism that these populations exhibit.


Subject(s)
Aphids/genetics , Biological Evolution , Animals , Aphids/physiology , Female , France , Male , Parthenogenesis , Reproduction , Seasons
9.
Mol Ecol ; 17(21): 4608-18, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19140984

ABSTRACT

Asexuality confers demographic advantages to invasive taxa, but generally limits adaptive potential for colonizing of new habitats. Therefore, pre-existing adaptations and habitat tolerance are essential in the success of asexual invaders. We investigated these key factors of invasiveness by assessing reproductive modes and host-plant adaptations in the pea aphid, Acyrthosiphon pisum, a pest recently introduced into Chile. The pea aphid encompasses lineages differing in their reproductive mode, ranging from obligatory cyclical parthenogenesis to fully asexual reproduction. This species also shows variation in host use, with distinct biotypes specialized on different species of legumes as well as more polyphagous populations. In central Chile, microsatellite genotyping of pea aphids sampled on five crops and wild legumes revealed three main clonal genotypes, which showed striking associations with particular host plants rather than sampling locations. Phenotypic analyses confirmed their strong host specialization and demonstrated parthenogenesis as their sole reproductive mode. The genetic relatedness of these clonal genotypes with corresponding host-specialized populations from the Old World indicated that each clone descended from a particular Eurasian biotype, which involved at least three successful introduction events followed by spread on different crops. This study illustrates that multiple introductions of highly specialized clones, rather than local evolution in resource use and/or selection of generalist genotypes, can explain the demographic success of a strictly asexual invader.


Subject(s)
Adaptation, Biological/genetics , Aphids/genetics , Genetics, Population , Animals , Aphids/classification , Chile , Ecosystem , Genetic Markers , Genetic Variation , Genotype , Microsatellite Repeats , Parthenogenesis , Phenotype , Reproduction, Asexual , Sequence Analysis, DNA
10.
Heredity (Edinb) ; 95(1): 24-33, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15931255

ABSTRACT

In Chile, the aphid Sitobion avenae is of recent introduction, lives on cultivated and wild Poaceae, and is thought to reproduce by permanent parthenogenesis. In order to study the genetic variability and population structure of this species, five microsatellite loci were typed from individual aphids collected from different cultivated and wild host plants, from different geographical zones, and years. Chilean populations showed a high degree of heterozygosity and a low genetic variability across regions and years, with four predominant genotypes representing nearly 90% of the sample. This pattern of low clonal diversity and high heterozygosity was interpreted as the result of recent founder events from a few asexually reproducing genotypes. Most geographical and temporal variation observed in the genetic composition resulted from fluctuations of a few predominant clones. In addition, comparisons of the genotypes found in Chile with those described in earlier surveys of S. avenae populations in Western Europe led us to identify 'superclones' with large geographical distribution and high ecological success, and to make a preliminary exploration of the putative origin(s) of S. avenae individuals introduced to Chile.


Subject(s)
Aphids/genetics , Genetics, Population , Parthenogenesis , Agriculture , Animals , Chile , Clone Cells , Geography , Microsatellite Repeats , Pest Control , Plants, Edible , Poaceae
11.
Bull Entomol Res ; 94(3): 219-27, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15191623

ABSTRACT

Herbivorous insect species with narrow diet breadth are expected to be more prone to genetic differentiation than insect species with a wider diet breadth. However, a generalist can behave as a local specialist if a single host-plant species is locally available, while a specialist can eventually behave as a generalist if its preferred host is not available. These problems can be addressed by comparing closely related species differing in diet breadth with overlapping distributions of insect and host populations. In this work, diet breadth, genetic diversity and population differentiation of congeneric aphid species from southern beech forests in Chile were compared. While at the species level no major differences in genetic diversity were found, a general trend towards higher genetic diversity as diet breadth increased was apparent. The aphid species with wider diet breadth, Neuquenaphis edwardsi (Laing), showed the highest genetic diversity, while the specialist Neuquenaphis staryi Quednau & Remaudière showed the lowest. These differences were less distinct when the comparisons were made in the same locality and over the same host. Comparison of allopatric populations indicates that genetic differentiation was higher for the specialists, Neuquenaphis similis Hille Ris Lambers and N. staryi, than for the generalist N. edwardsi. Over the same host at different locations, genetic differentiation among populations of N. edwardsi was higher than among populations of N. similis. The results support the assumption that specialists should show more pronounced genetic structuring than generalists, although the geographical distribution of host plants may be playing an important role.


Subject(s)
Aphids/genetics , Genetic Variation , Animals , Aphids/physiology , Chile , Diet/veterinary , Female , Host-Parasite Interactions , Male , Population Dynamics
12.
Bull Entomol Res ; 94(1): 11-8, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14972045

ABSTRACT

The tobacco-feeding race of Myzus persicae (Sulzer), formerly known as M. nicotianae Blackman, was introduced into Chile during the last decade. In order to evaluate the genetic diversity and insecticide resistance status of Chilean tobacco aphid populations, a field survey was conducted in 35 tobacco fields covering a 300 km latitudinal survey. The populations sampled were characterized using microsatellite markers and morphometric multivariate analysis. Insecticide resistance levels were assessed through a microplate esterase assay and the mutation status of the kdr gene. All samples collected corresponded to the same anholocyclic aphid genotype, and showed morphological variation within the range expected for the tobacco-feeding race of M. persicae. Esterase activity showed the level and variability expected for an R1 clone lacking mutations in the sodium channels (susceptible kdr), thus corresponding to a type slightly resistant to organophosphate and carbamate, and susceptible to pyrethroid insecticides.


Subject(s)
Aphids/genetics , Genetic Variation , Insecticide Resistance/genetics , Nicotiana/parasitology , Animals , Aphids/drug effects , Chile , Female , Genotype , Male , Microsatellite Repeats
13.
J Insect Physiol ; 49(3): 223-9, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12769997

ABSTRACT

The presence of glutathione transferases and esterase activity was investigated in Rhopalosiphum padi and the effects of the cereal hydroxamic acid, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) on these detoxification enzymes was studied. Activity of glutathione S-transferases and general esterases was determined for adult aphids feeding on a natural diet lacking DIMBOA and on an artificial DIMBOA-containing diet for 48 hours. In vivo, DIMBOA in the diet inhibited the activities of esterases by 50-75% at all concentrations tested (0.5-4 mM). The activity of glutathione transferase was inhibited to a lesser extent (30%) at the higher concentrations of DIMBOA. In vitro, DIMBOA generally inhibited the activity of esterases with an IC(50) of 33 micro M, and had a slight inhibitory effect on glutathione S-transferases. These effects of DIMBOA could make the aphids vulnerable to electrophilic agents and insecticides which may be metabolized via esterases and GSTs. In cereals, therefore, DIMBOA may act by interfering with esterase- or GST-mediated detoxification of xenobiotics by aphids.


Subject(s)
Aphids/enzymology , Esterases/metabolism , Glutathione Transferase/metabolism , Insecticides/pharmacokinetics , Oxazines/pharmacology , Animals , Benzoxazines , Diet , Dose-Response Relationship, Drug , Edible Grain , Esterases/drug effects , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/drug effects , Inactivation, Metabolic , Kinetics
14.
Bull Entomol Res ; 92(1): 25-34, 2002 Feb.
Article in English | MEDLINE | ID: mdl-12020359

ABSTRACT

Hydroxamic acids (Hx) contained in wheat are active mutagens which play an important role in the defence of the plant against aphids. Random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) dominant markers were used to assess genetic variability in the aphid Sitobion avenae (Fabricius) in relation to hydroxamic acid levels in their host-plants. Colonies of aphids belonging to a single RAPD-PCR profile were grown on different host-plants differing in their Hx content under greenhouse conditions. The RAPD-PCR phenotypic pattern showed the appearance of two new RAPD-PCR variants after four to five generations of exposure to wheat cv. Chagual (high Hx levels), one after exposure to wheat cv. Huayún (low Hx levels), and none after exposure to oat (lacking Hx). Differential appearance of new RAPD-PCR aphid phenotypes also occurred on field-grown wheat. While the overall phenotypic 'richness' diminished during the season, the number of RAPD-PCR phenotypes decreased on cv. Huayún and increased on cv. Chagual. The preferential appearance in the field and in the greenhouse of new RAPD-PCR phenotypes of S. avenae on cv. Chagual is discussed on the basis of mutagenesis induced by hydroxamic acids and by the products of their transformation within the aphid. Aphid abundance is interpreted in terms of antixenosis and antibiosis by hydroxamic acids. The appearance on cv. Chagual of phenotypes first detected on cv. Huayún was accounted for by intercrop migrations.


Subject(s)
Aphids/genetics , Hydroxamic Acids/metabolism , Triticum/chemistry , Animals , Aphids/classification , Aphids/growth & development , Base Sequence , Genetic Variation , Molecular Sequence Data , Phenotype , Random Amplified Polymorphic DNA Technique/veterinary , Triticum/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...