Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 10(3): 1808-1818, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38411100

ABSTRACT

Bacteria are an old concern to human health, as they are responsible for nosocomial infections, and the number of antibiotic-resistant microorganisms keeps growing. Copper is known for its intrinsic biocidal properties, and therefore, it is a promising material to combat infections when added to surfaces. However, its biocidal properties in the presence of light illumination have not been fully explored, especially regarding the use of microsized particles since nanoparticles have taken over all fields of research and subjugated microparticles despite them being abundant and less expensive. Thus, the present work studied the bactericidal properties of metallic copper particles, in microscale (CuMPs) and nanoscale (CuNPs), in the absence of light and under white LED light illumination. The minimum bactericidal concentration (MBC) of CuMPs against Staphylococcus aureus that achieved a 6-log reduction was 5.0 and 2.5 mg mL-1 for assays conducted in the absence of light and under light illumination, respectively. Similar behavior was observed against Escherichia coli. The bactericidal activity under illumination provided a percentage increase in log reduction values of 65.2% for S. aureus and 166.7% for E. coli when compared to the assays under dark. This assay reproduced the testing CuNPs, which showed superior bactericidal activity since the concentration of 2.5 mg mL-1 promoted a 6-log reduction of both bacteria even under dark. Its superior bactericidal activity, which overcame the effect of illumination, was expected once the nanoscale facilitated the interaction of copper within the surface of bacteria. The results from MBC were supported by fluorescence microscopy and atomic absorption spectroscopy. Therefore, CuMPs and CuNPs proved to have size- and dose-dependent biocidal activity. However, we have shown that CuMPs photoactivity is competitive compared to that of CuNPs, allowing their application as a self-cleaning material for disinfection processes assisted by conventional light sources without additives to contain the spread of pathogens.


Subject(s)
Copper , Staphylococcus aureus , Humans , Copper/pharmacology , Copper/chemistry , Escherichia coli , Lighting , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria
2.
Langmuir ; 38(6): 2109-2116, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35113576

ABSTRACT

This paper reports the competition of H2O (residual) and H2 by site (defects) on the Si surface, created by Xe+ ion bombardment. X-ray photoelectron spectroscopy (XPS) in an ultrahigh vacuum system attached to the sample preparation chamber provided the data for the analyses. As hydrogen cannot be detected by XPS, an indirect method to evaluate the O and H cover ratio was developed. The hydrogen passivation effect obtained by the formation of the Si-H bond due to H2 chemisorption limits Si-OH and Si-O-Si bonds, which are products of H2O dissociation. In addition, the results have shown that Xe+ ion bombardment diminished the H2 chemisorption energy barrier onto Si.

3.
ACS Appl Mater Interfaces ; 13(36): 43746-43754, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34491711

ABSTRACT

In dry sliding, the coefficient of friction depends on the material pair and contact conditions. If the material and operating conditions remain unchanged, the coefficient of friction is constant. Obviously, we can tune friction by surface treatments, but it is a nonreversible process. Here, we report active control of friction forces on TiO2 thin films under UV light. It is reversible and stable and can be tuned/controlled with the light wavelength. The analysis of atomic force microscopy signals by wavelet spectrograms reveals different mechanisms acting in the darkness and under UV. Ab initio simulations on UV light-exposed TiO2 show a lower atomic orbital overlapping on the surface, which leads to a friction reduction of up to 60%. We suggest that photocontrol of friction is due to the modification of atomic orbital interactions from both surfaces at the sliding interface.

4.
ACS Biomater Sci Eng ; 7(8): 3683-3695, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34291900

ABSTRACT

Ti6Al4V is one of the most lightweight, mechanically resistant, and appropriate for biologically induced corrosion alloys. However, surface properties often must be tuned for fitting into biomedical applications, and therefore, surface modification is of paramount importance to carry on its use. This work compares the interaction between two different cell lines (L929 fibroblasts and osteoblast-like MG63) and medical grade Ti6Al4V after surface modification by plasma nitriding or thin film deposition. We studied the adhesion of these two cell lines, exploring which trends are consistent for cell behavior, correlating with osseointegration and in vivo conditions. Modified surfaces were analyzed through several physicochemical characterization techniques. Plasma nitriding led to a more pronounced increase in surface roughness, a thicker aluminum-free layer, made up of diverse titanium nitride phases, whereas thin film deposition resulted in a single-phase pure titanium nitride layer that leveled the ridged topography. The selective adhesion of osteoblast-like cells over fibroblasts was observed in nitrided samples but not in thin film deposited films, indicating that the competitive cellular behavior is more pronounced in plasma nitrided surfaces. The obtained coatings presented an appropriate performance for its use in biomedical-aimed applications, including the possibility of a higher success rate in osseointegration of implants.


Subject(s)
Coated Materials, Biocompatible , Alloys , Corrosion , Surface Properties , Cell Line , Animals , Mice , Humans
5.
Phys Chem Chem Phys ; 23(4): 2873-2884, 2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33475105

ABSTRACT

Friction is a ubiquitous manifestation of nature, and when it is studied at the nanoscale, complex and interesting effects arise from fundamental physical and chemical surface properties. Surprisingly, and probably due to the complexity of nanofriction studies, this aspect has not been completely discussed in prior studies. To fully consider the physicochemical influence in nanoscale friction, amorphous carbon films with different amounts of hydrogen and fluorine were prepared, chemically characterized, and evaluated via lateral force microscopy. Hydrogen and fluorine were selected because although they exhibit different physicochemical properties, both contribute to frictional force reduction. Indeed, to explain the experimental behavior, it is necessary to propose a new damping constant unifying both polarizability (physical) and electronegativity (chemical) properties. The satisfactory agreement between theory and experiments may encourage and enhance deeper discussion and new experiments that take into account the chemical peculiarities of frictional behavior relating to nanoscale elastic regimes.

6.
ACS Omega ; 5(43): 28027-28036, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33163785

ABSTRACT

The role played by oxygen vacancies and rare earth (RE) elements in the anatase-to-rutile (A-R) phase transformation of titanium dioxide (TiO2) is still a matter of controversy. Here, we report the A-R transformation of TiO2 thin solid films as obtained by ion beam sputtering a RE-decorated titanium target in an oxygen-rich atmosphere. The samples correspond to undoped, single-doped (Sm, Tm, and Tb), and codoped (Sm:Tb, Sm:Tm, and Sm:Tb:Tm) TiO2 films. In the as-prepared form, the films are amorphous and contain ∼0.5 at. % of each RE. The structural modifications of the TiO2 films due to the RE elements and the annealing treatments in an oxygen atmosphere are described according to the experimental results provided by Raman scattering, X-ray photoelectron spectroscopy, and optical measurements. The A-R transformation depends on both the annealing temperature and the characteristics of the undoped, single-doped, and codoped TiO2 films. As reported in the literature, the A-R transformation can be inhibited or enhanced by the presence of impurities and is mostly related to energetic contributions. The experimental results were analyzed, considering the essential and stabilizing role of the entropy of mixing in the A-R transformation due to the introduction of more and multiple quantum states originated in vacancies and impurities in the anatase phase.

7.
ACS Appl Mater Interfaces ; 11(19): 18024-18033, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30951281

ABSTRACT

Hydrogenated amorphous carbon thin films (a-C:H) have attracted much attention because of their surprising properties, including ultralow friction coefficients in specific conditions. Adhesion of a-C:H films on ferrous alloys is poor due to chemical and physical aspects, avoiding a widespread application of such a film. One possibility to overcome this drawback is depositing an interlayer-an intermediate thin film-between the carbon-based coating and the substrate to improve chemical interaction and adhesion. Based on this, interlayers play a key role on a-C:H thin-film adhesion through a better chemical network structure at the outermost layer of the a-SiC x:H interlayer, i.e., the a-C:H/a-SiC x:H interface. However, despite the latest important advances on the subject, the coating adhesion continues being a cumbersome problem since it depends on multifactorial causes. Thus, the purpose of this paper is to report a standard protocol leading to surprising good results based on the control of the interfacial chemical bonding by properly biasing the substrate (between 500 and 800 V) during the a-SiC x:H interlayer deposition at an appropriate low temperature, by using hexamethyldisiloxane as precursor. The interlayers and the outermost interfaces were analyzed by a comprehensive set of techniques, including X-ray photoelectron spectroscopy, glow discharge optical emission spectroscopy, and Fourier transform infrared spectroscopy. Nanoscratch tests, complemented by scanning electron microscopy and energy-dispersive X-ray spectroscopy, were used to evaluate the critical load for delamination to certify and quantify the adhesion improvement. This study was important to identify the chemical local bonding of the elements at the interface and its local environment, including the in-depth chemical composition profile of the coating. An important effect is that the oxygen content decreases on increasing substrate bias voltage, improving the adhesion of the film. This is due to the fact that energetic ion hitting the growing interlayer breaks Si-O and C-O bonds, augmenting the content of Si-C and C-C bonds at the outermost interface of the a-SiC x:H interlayer and enhancing the a-C:H coating adhesion. Moreover, the combination of high bias voltage (800 V) and low temperature (150 °C) during the a-SiC x:H interlayer deposition allows good adhesion of a-C:H thin films due to sputtering of light elements like oxygen. Therefore, an appropriated bias and temperature combination can open new pathways in a-C:H thin-film deposition at low temperatures. These results are particularly interesting for temperature-sensible metal alloys, where well-adhered a-C:H thin films are mandatory for tribological applications.

8.
Phys Chem Chem Phys ; 20(34): 21949-21959, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30091772

ABSTRACT

Hydrogenated amorphous carbon (a-C:H) thin films have a unique combination of properties that are fundamental in mechanical and electromechanical devices aimed at energy efficiency issues. The literature brings a wealth of information about the ultra-low friction (superlubricity) mechanism in a-C:H thin films. However, there is persistent controversy concerning the physicochemical mechanisms of contact mechanics at the atomic/molecular level and the role of electrical interactions at the sliding interface is still a matter of debate. We find that the hydrogenation of the outermost nanostructured surface atomic layers of a-C:H thin films is proportional to the surface potential and also to the friction forces arising at the sliding interface. A higher hydrogen-to-carbon ratio reduces the surface potential, directly affecting frictional forces by a less effective long-term interaction. The structural ultra-low friction (superlubricity) is attributed to a lower polarizability at the outermost nanostructured layer of a-C:H thin films due to a higher hydrogen density, which renders weaker van der Waals forces, in particular London dispersion forces. More hydrogenated nanodomains at the surface of a-C:H thin films are proposed to be used to tailor superlubricity.

9.
Ann Thorac Surg ; 103(6): 1914-1921, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28063468

ABSTRACT

BACKGROUND: We present the possible utility of computational fluid dynamics in the assessment of thrombus formation and virtual surgical planning illustrated in a patient with aortic thrombus in a kinked ascending aortic graft following thoracic endovascular aortic repair. METHODS: A patient-specific three-dimensional model was built from computed tomography. Additionally, we modeled 3 virtual aortic interventions to assess their effect on thrombosis potential: (1) open surgical repair, (2) conformable endografting, and (3) single-branched endografting. Flow waveforms were extracted from echocardiography and used for the simulations. We used the computational index termed platelet activation potential (PLAP) representing accumulated shear rates of fluid particles within a fluid domain to assess thrombosis potential. RESULTS: The baseline model revealed high PLAP in the entire arch (119.8 ± 42.5), with significantly larger PLAP at the thrombus location (125.4 ± 41.2, p < 0.001). Surgical repair showed a 37% PLAP reduction at the thrombus location (78.6 ± 25.3, p < 0.001) and a 24% reduction in the arch (91.6 ± 28.9, p < 0.001). Single-branched endografting reduced PLAP in the thrombus region by 20% (99.7 ± 24.6, p < 0.001) and by 14% in the arch (103.8 ± 26.1, p < 0.001), whereas a more conformable endograft did not have a profound effect, resulting in a modest 4% PLAP increase (130.6 ± 43.7, p < 0.001) in the thrombus region relative to the baseline case. CONCLUSIONS: Regions of high PLAP were associated with aortic thrombus. Aortic repair resolved pathologic flow patterns, reducing PLAP. Branched endografting also relieved complex flow patterns reducing PLAP. Computational fluid dynamics may assist in the prediction of aortic thrombus formation in hemodynamically complex cases and help guide repair strategies.


Subject(s)
Aorta/physiopathology , Aortic Aneurysm/physiopathology , Endovascular Procedures/adverse effects , Hemodynamics , Thrombosis/physiopathology , Aged , Aorta/anatomy & histology , Aorta/diagnostic imaging , Aorta/surgery , Aortic Aneurysm/diagnostic imaging , Aortic Aneurysm/surgery , Female , Humans , Models, Cardiovascular , Thrombosis/etiology , Tomography, X-Ray Computed
10.
J Nanosci Nanotechnol ; 12(8): 6439-44, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22962761

ABSTRACT

Mesoporous silica films were used as host for metal-based (Me = Fe, Co, Ni) nanoparticles via wet impregnation at pH = 5. A hydrogen ion beam was used to reduce the metallic oxide and hydroxides, previously detected by X-ray photoelectron spectroscopy, in metals. Chemical vapor deposition processes at three different conditions varying the acetylene-nitrogen proportion were performed on the mesoporous films decorated by different metal-based nanoparticles. The grown carbon nanostructures were characterized by high-resolution transmission electron microscopy and scanning electron microscopy. The ability to grow carbon nanostructures decreases in the following order: Fe > Co > Ni. When pure acetylene is used, iron allows to form graphene sheets around the metal catalyst like carbon nanocapsules, whereas cobalt allows to form structures that seem to be carbon nanotubes. Nitrogen leads to control the size and shape of carbon nanocapsules for iron catalyst and avoid the growth of such carbon nanotube-like structures for cobalt catalyst.

11.
J Nanosci Nanotechnol ; 8(1): 448-51, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18468101

ABSTRACT

Mesoporous films obtained by dip-coating, combining polycondensation of silicate species and organization of amphiphilic mesophases, were decorated with iron-based nanoparticles from iron aqueous solution. High-resolution transmission electron microscopy (HR-TEM) images and energy dispersive X-rays spectroscopy (EDS) analysis show that the nanoparticles have diameters between 5 to 10 nm and they are deposited in an ordered sequence exclusively on top of the mesoporous structure. Afterward, by irradiating the material with a hydrogen ion beam, the iron-based compound is functionalized, i.e., its physical-chemical properties are modified. X-ray photoelectron spectroscopy (XPS) showed that the iron oxides and hydroxides are reduced to metallic iron. The deposition of organized iron-based nanoparticles and further ion beam functionalization might open perspectives on the study and fabrication of complex new materials.

12.
J Colloid Interface Sci ; 225(2): 403-410, 2000 May 15.
Article in English | MEDLINE | ID: mdl-11254279

ABSTRACT

The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate-oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni(1.06)Fe(1.96)O(4). The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation; the best fitting corresponds to K(1)(ads)=25.6 mol(-1) dm(-3) and k(1)(max)=9.17x10(-7) mol m(-2) s(-1) and K(2)(ads)=37.1x10(3) mol(-1) dm(-3) and k(2)(max)=62.3x10(-7) mol m(-2) s(-1), respectively. In the second stage, Langmuir-Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite, with K(1)(ads)=20.8 mol(-1) dm(3) and K(2)(ads)=1.16x10(5) mol(-1) dm(3). For iron, k(1)(max)=1.02x10(-7) mol of Fe m(-2) s(-1) and k(2)(max)=2.38x10(-7) mol of Fe m(-2) s(-1); for nickel, the rate constants k(1)(max) and k(2)(max) are 2.4 and 1.79 times smaller, respectively. The factor 1.79 agrees nicely with the stoichiometric ratio, whereas the factor 2.4 implies the accumulation of some nickel in the residual particles. The rate of nickel dissolution in oxalic acid is higher than that in bunsenite by a factor of 8, whereas hematite is more reactive by a factor of 9 (in the absence of Fe(II)) and 27 (in the presence of Fe (II)). It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Copyright 2000 Academic Press.

SELECTION OF CITATIONS
SEARCH DETAIL
...