Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 945: 174034, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885716

ABSTRACT

Gold cyanidation facilities in the Arequipa Region of Peru are challenged by the availability and quality of water for processing in an arid environment. The facilities reuse decant water which recycles residual cyanide but also undesirable constituents. To understand the impact of intensive water recycling on cyanide and metals concentrations, we collected barren water, decant water, and tailings samples from six gold cyanidation facilities with ore capacities of 10-430 tons per day. Processing facilities in Arequipa recycle all effluents, with decant waters making up 58 ± 11 % of process waters. Decant water contained non-target metals: copper (394 ± 161 mg/L), iron (59 ± 34 mg/L), and zinc (74 ± 42 mg/L). In addition, decant water mean free and complexed cyanide concentrations were 534 ± 129 mg/L and 805 ± 297 mg/L, respectively. Complexed cyanide concentrations remained more constant than free cyanide concentrations with 786 ± 299 mg/L for barren water and 805 ± 297 mg/L for decant water. Cyanide mass balances showed between 21 % and 42 % of unaccounted free cyanide from the start of gold cyanidation and discharge to the tailings storage facility (TSF). Free cyanide estimated losses due to volatilization were 0.8 kg and 2.5 kg of hydrogen cyanide per ton of ore processed at barren water pH of 10.1 and 9.7. Together these results indicate two acute hazards: 1) volatilization of free cyanide during processing and 2) loading and retention of cyanides and metals into TSFs. This study elucidates the extent of uncontrolled vapor phase cyanide release during gold processing operation and contaminant concentrations in the tailings storage facilities. The data highlights the need for improvement oversight, accountability, and regulation of gold processing facilities practicing intensive recycling and zero discharge.

2.
Environ Sci Technol ; 58(5): 2502-2513, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38277687

ABSTRACT

Wildfires at the wildland-urban interface (WUI) are increasing in frequency and intensity, driven by climate change and anthropogenic ignitions. Few studies have characterized the variability in the metal content in ash generated from burned structures in order to determine the potential risk to human and environmental health. Using inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed leachable trace metal concentration in soils and ash from structures burned by the Marshall Fire, a WUI fire that destroyed over 1000 structures in Boulder County, Colorado. Acid digestion revealed that ash derived from structures contained 22 times more Cu and 3 times more Pb on average than surrounding soils on a mg/kg basis. Ash liberated 12 times more Ni (mg/kg) and twice as much Cr (mg/kg) as soils in a water leach. By comparing the amount of acid-extractable metals to that released by water and simulated epithelial lung fluid (SELF), we estimated their potential for environmental mobility and human bioaccessibility. The SELF leach showed that Cu and Ni were more bioaccessible (mg of leachable metal/mg of acid-extractable metal) in ash than in soils. These results suggest that structure ash is an important source of trace metals that can negatively impact the health of both humans and the environment.


Subject(s)
Metals, Heavy , Trace Elements , Wildfires , Humans , Trace Elements/analysis , Metals/analysis , Soil/chemistry , Water , Metals, Heavy/chemistry
3.
Water Environ Res ; 95(12): e10957, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38129948

ABSTRACT

A transition from inefficient aerobic wastewater treatment methods to sustainable approaches is needed. Anaerobic bioreactors are a viable solution as they consume less energy, reduce biosolid production, and provide a source of renewable methane-rich biogas. A barrier to widespread implementation of anaerobic technologies is the lack of design guidance, especially in colder climates. This study bridges this knowledge gap by deriving design principles from three long-running pilot-scale anaerobic baffled reactors (ABRs) operating under psychrophilic conditions. The ABRs removed an average of 56% and 80% chemical oxygen demand (COD) and suspended solids, respectively, with a methane yield of 0.21 L CH4 /g CODrem . Methane production may be improved with increased influent sCOD concentrations and decreased sulfate concentrations. Results suggest that ABRs can treat a range of wastewater strengths accompanied by useable methane production. Despite sharing location, temperature, and HRT, the ABRs displayed distinct performances, highlighting the significance of influent wastewater characteristics. PRACTITIONER POINTS: ABRs achieved 56% and 80% removal efficiencies for COD and suspended solids. Average biogas was 63% methane, and methane yield was 0.21 L CH4 /g CODrem . Volumetric methane production was positively correlated with the influent sCOD/sulfate ratio and negatively correlated with influent sulfate loading.


Subject(s)
Waste Disposal, Fluid , Wastewater , Waste Disposal, Fluid/methods , Anaerobiosis , Temperature , Biofuels , Colorado , Bioreactors , Methane , Sulfates
4.
Sci Total Environ ; 898: 165492, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37453708

ABSTRACT

Artisanal and small-scale gold mining (ASGM) is the leading global source of anthropogenic mercury (Hg) release to the environment. Top-down mercury reduction efforts have had limited results, but a bottom-up embrace of cyanide (CN) processing could eventually displace mercury amalgamation for gold recovery. However, ASGM transitions to cyanidation nearly always include an overlap phase, with mercury amalgamation then cyanidation being used sequentially. This paper uses a transdisciplinary approach that combines natural and social sciences to develop a holistic picture of why mercury and cyanide converge in gold processing and potential impacts that may be worse than either practice in isolation. We show that socio-economic factors drive the comingling of mercury and cyanide practices in ASGM as much or more so than technical factors. The resultant Hg-CN complexes have been implicated in increasing the mobility of mercury, compared to elemental mercury used in Hg-only processing. To support future inquiry, we identify key knowledge gaps including the role of Hg-CN complexes in mercury oxidation, transport, and fate, and possible links to mercury methylation. The global extent and increase of mercury and cyanide processing in ASGM underscores the importance of further research. The immediacy of the problem also demands interim policy responses while research advances, though ultimately, the well-documented struggles of mercury reduction efforts in ASGM temper optimism about policy responses to the mercury-cyanide transition.

5.
Nanomaterials (Basel) ; 13(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37368305

ABSTRACT

This work presented the production and incorporation of calcium-hydrolyzed nano-solutions at three concentrations (1, 2, and 3 wt.%) in alkali-activated gold mine tailings (MTs) from Arequipa, Perú. As the primary activator solution, a sodium hydroxide (NaOH) solution at 10 M was used. Calcium-hydrolyzed nanoparticles with a particle size of 10 nm were localized inside self-assembled molecular spherical systems (micelles) with diameters of less than 80 nm that were well-dispersed in aqueous solutions and acted as secondary activator, and also as additional calcium resource for alkali-activated materials (AAMs) based on low-calcium gold MTs. High-resolution transmission electron microscopy/energy-dispersive X-ray spectroscopy (HR-TEM/EDS) analyses were carried out to characterize the morphology, size, and structure of the calcium-hydrolyzed nanoparticles. Fourier transform infrared (FTIR) analyses were then used to understand the chemical bonding interactions in the calcium-hydrolyzed nanoparticles and in the AAMs. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) and quantitative X-ray diffraction (QXRD) were performed to study the structural, chemical, and phase compositions of the AAMs; uniaxial compressive tests evaluated the compressive strength of the reaction AAMs; and nitrogen adsorption-desorption analyses measured porosity changes in the AAMs at the nanostructure level. The results indicated that the main cementing product generated was amorphous binder gel with low quantities of nanostructured C-S-H and C-A-S-H phases. The surplus production of this amorphous binder gel produced denser AAMs at the micro-level and nano-level (macroporous systems). In addition, each increase in the concentration of calcium-hydrolyzed nano-solution had a direct/proportional effect on the mechanical properties of the AAM samples. AAM with 3 wt.% calcium-hydrolyzed nano-solution had the highest compressive strength, with a value of 15.16 MPa, which represented an increase of 62% compared with the original system without nanoparticles that were aged under the same conditions at 70 °C for seven days. These results provided useful information about the positive effect of calcium-hydrolyzed nanoparticles on gold MTs and their conversion into sustainable building materials through alkali activation.

6.
J Environ Manage ; 329: 116958, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36549066

ABSTRACT

Reclamation of mine waste rock piles typically consists of constructing a cover with amendments to improve conditions for vegetation. However, cover amendments have potential to mobilize metals in waste by introducing new chemicals and altering pH and redox conditions. This study evaluates metal phases in a 100-year-old waste rock pile with high metals content (3.5% lead by weight, 0.8% zinc, and 0.75% copper) and the potential for these metals to be mobilized by several cover materials and amendments (topsoil, spent brewery grain, biochar, compost, commercial soil media, and phosphate). Laboratory testing indicates that metals have weathered from their initial metal sulfide phases (galena, sphalerite, chalcopyrite), and are now also present as sulfates, phosphates, carbonates, and phases associated with manganese/iron oxides. Sequential extraction tests demonstrated that the largest extractable fraction of metals is associated with manganese/iron oxides (37% of lead by weight, 22% of copper, and 26% of zinc), suggesting an environmental risk should geochemically reducing conditions develop and mobilize metals in the pile after cover construction. Testing of specific cover materials demonstrated that metals mobilization also occurs from low pH (as with spent brewery grain), formation of stable aqueous metal-organic complexes (as with spent brewery grain and compost), and ligand exchange (as with phosphate amendment). Results of this study demonstrate the importance of identifying metal phases present in a waste rock pile prior to selecting cover amendments.


Subject(s)
Metals, Heavy , Soil Pollutants , Copper , Manganese , Metals , Soil , Zinc , Iron , Oxides , Soil Pollutants/chemistry
7.
Polymers (Basel) ; 14(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35890585

ABSTRACT

Beneficiation of industrial wastes, such as mine tailings (MTs), through development of alternative eco-friendly geopolymer binders for construction composites offers a twofold environmental benefit, as it reduces the demand for cement and it increases the sustainability of industrial processes by creating a value-added product from an industrial byproduct. While MTs have the requisite composition for use as a geopolymer precursor, they are often low-reactive. This study explored the effect of Class C Fly Ash (FAc) on the geopolymerization of low-reactive gold MTs. A 10 M sodium hydroxide (NaOH) solution was used as the alkaline activator with four different concentrations of FAc (5, 10, 15 and 20 wt.%). The results indicated that the combination of FAc with the low-reactive gold MTs improved the physicochemical stability of the final geopolymerized samples, with a 95-120% increase in compressive strength, compared to the geopolymer samples of only low-reactive gold MTs. Although some of the strength improvement could be attributed to geopolymerization of the FAc itself, the presence of the FAc also improved the reactivity of the MTs, increasing the geopolymer production of the MTs. This study documents the positive effects of the FAc on gold MTs with low-calcium content and their conversion into sustainable inorganic composite geopolymers for the construction field.

8.
Environ Sci Technol ; 52(18): 10500-10510, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30130383

ABSTRACT

The objective of this study was to evaluate the lifecycle impacts of anaerobic primary treatment of domestic wastewater using anaerobic baffled reactors (ABRs) coupled with aerobic secondary treatment relative to conventional wastewater and sludge/biosolids treatment systems through the application of wastewater treatment modeling and three lifecycle-based analyses: environmental lifecycle assessment, net energy balance, and lifecycle costing. Data from two pilot-scale ABRs operated under ambient wastewater temperatures were used to model the anaerobic primary treatment process. To address uncertain parameters in the scale-up of pilot-scale anaerobic reactor data, uncertainty analysis and Monte Carlo simulation were employed. This study demonstrates that anaerobic primary treatment of domestic wastewater using ABRs can be incorporated with existing aerobic treatment strategies to reduce aeration demand, reduce sludge production, and increase energy generation. The net result of coupling anaerobic primary treatment with aerobic secondary treatment is a more favorable net energy balance, reduced environmental impacts in most examined categories, and lower lifecycle costs relative to conventional treatment configurations; however, the removal and/or capture of dissolved methane is required to reduce global warming impacts and increase on-site energy generation. With further study, anaerobic primary treatment can be a path forward for energy-positive wastewater treatment.


Subject(s)
Sewage , Wastewater , Anaerobiosis , Bioreactors , Methane , Waste Disposal, Fluid
9.
Water Environ Res ; 90(6): 530-542, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29789043

ABSTRACT

Mainstream anaerobic treatment of domestic wastewater is a promising energy-generating treatment strategy; however, such reactors operated in colder regions are not well characterized. Performance data from a pilot-scale, multiple-compartment anaerobic reactor taken over 786 days were subjected to comprehensive statistical analyses. Results suggest that chemical oxygen demand (COD) was a poor proxy for organics in anaerobic systems as oxygen demand from dissolved inorganic material, dissolved methane, and colloidal material influence dissolved and particulate COD measurements. Additionally, univariate and functional boxplots were useful in visualizing variability in contaminant concentrations and identifying statistical outliers. Further, significantly different dissolved organic removal and methane production was observed between operational years, suggesting that anaerobic reactor systems may not achieve steady-state performance within one year. Last, modeling multiple-compartment reactor systems will require data collected over at least two years to capture seasonal variations of the major anaerobic microbial functions occurring within each reactor compartment.


Subject(s)
Bioreactors , Wastewater/chemistry , Water Purification/instrumentation , Anaerobiosis , Family Characteristics , Time Factors , Water Purification/methods
10.
Water Res ; 115: 50-59, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28259814

ABSTRACT

Sulfate-reducing bioreactors (SRBRs) represent a passive, sustainable, and long-term option for mitigating mining influenced water (MIW) during release. Here we investigate spatial zinc precipitation profiles as influenced by substrate differentiation, inorganic ligand availability (inorganic carbon and sulfide), and microbial community structure in pilot-scale SRBR columns fed with sulfate and zinc-rich MIW. Through a combination of aqueous sampling, geochemical digests, electron microscopy and energy-dispersive x-ray spectroscopy, we were able to delineate zones of enhanced zinc removal, identify precipitates of varying stability, and discern the temporal and spatial evolution of zinc, sulfur, and calcium associations. These geochemical insights revealed spatially variable immobilization regimes between SRBR columns that could be further contrasted as a function of labile (alfalfa-dominated) versus recalcitrant (woodchip-dominated) solid-phase substrate content. Both column subsets exhibited initial zinc removal as carbonates; however precipitation in association with labile substrates was more pronounced and dominated by metal-sulfide formation in the upper portions of the down flow columns with micrographs visually suggestive of sphalerite (ZnS). In contrast, a more diffuse and lower mass of zinc precipitation in the presence of gypsum-like precipitates occurred within the more recalcitrant column systems. While removal and sulfide-associated precipitation were spatially variable, whole bacterial community structure (ANOSIM) and diversity estimates were comparatively homogeneous. However, two phyla exhibited a potentially selective relationship with a significant positive correlation between the ratio of Firmicutes to Bacteroidetes and sulfide-bound zinc. Collectively these biogeochemical insights indicate that depths of maximal zinc sulfide precipitation are temporally dynamic, influenced by substrate composition and broaden our understanding of bio-immobilized zinc species, microbial interactions and potential operational and monitoring tools in these types of passive bioreactors.


Subject(s)
Water , Zinc/chemistry , Bioreactors/microbiology , Mining , Sulfates/chemistry
11.
Bio Protoc ; 7(1): e2083, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-34458414

ABSTRACT

Column studies can be employed to query systems that mimic environmentally relevant flow-through processes in natural and built environments. Sampling these systems spatially throughout operation, while maintaining the integrity of aqueous and solid-phase samples for geochemical and microbial analyses, can be challenging particularly when redox conditions within the column differ from ambient conditions. Here we present a pilot-scale column design and sampling protocol that is optimized for long-term spatial and temporal sampling. We utilized this experimental set-up over approximately 2 years to study a biologically active system designed to precipitate zinc-sulfides during sulfate reducing conditions; however, it can be adapted for the study of many flow-through systems where geochemical and/or molecular microbial analyses are desired. Importantly, these columns utilize retrievable solid-phase bags in conjunction with anoxic microbial techniques to harvest substrate samples while minimally disrupting column operation.

12.
Genome Announc ; 4(1)2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26769931

ABSTRACT

Sulfate-reducing bacteria are important players in the global sulfur cycle and of considerable commercial interest. The draft genome sequence of a sulfate-reducing bacterium of the family Desulfobacteraceae, assembled from a sulfate-reducing bioreactor metagenome, indicates that heavy-metal- and acid-resistance traits of this organism may be of importance for its application in acid mine drainage mitigation.

13.
Environ Sci Technol ; 50(1): 378-87, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26605699

ABSTRACT

Syntrophic relationships between fermentative and sulfate-reducing bacteria are essential to lignocellulose-based systems applied to the passive remediation of mining-influenced waters. In this study, seven pilot-scale sulfate-reducing bioreactor columns containing varying ratios of alfalfa hay, pine woodchips, and sawdust were analyzed over ∼500 days to investigate the influence of substrate composition on zinc removal and microbial community structure. Columns amended with >10% alfalfa removed significantly more sulfate and zinc than did wood-based columns. Enumeration of sulfate reducers by functional signatures (dsrA) and their putative identification from 16S rRNA genes did not reveal significant correlations with zinc removal, suggesting limitations in this directed approach. In contrast, a strong indicator of zinc removal was discerned in comparing the relative abundance of core microorganisms shared by all reactors (>80% of total community), many of which had little direct involvement in metal or sulfate respiration. The relative abundance of Desulfosporosinus, the dominant putative sulfate reducer within these reactors, correlated to representatives of this core microbiome. A subset of these clades, including Treponema, Weissella, and Anaerolinea, was associated with alfalfa and zinc removal, and the inverse was found for a second subset whose abundance was associated with wood-based columns, including Ruminococcus, Dysgonomonas, and Azospira. The construction of a putative metabolic flowchart delineated syntrophic interactions supporting sulfate reduction and suggests that the production of and competition for secondary fermentation byproducts, such as lactate scavenging, influence bacterial community composition and reactor efficacy.


Subject(s)
Bioreactors/microbiology , Desulfovibrio/metabolism , Lignin , Sulfates , Zinc , Lignin/chemistry , Lignin/metabolism , Oxidation-Reduction , Sulfates/chemistry , Sulfates/metabolism , Zinc/analysis , Zinc/isolation & purification , Zinc/metabolism
14.
Water Res ; 87: 494-502, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26414605

ABSTRACT

A four-cell anaerobic baffled reactor (ABR) was operated for two years treating raw municipal wastewater at ambient water and air temperatures of 12-23 °C and -10 to 35 °C, respectively. The 1000-L pilot reactor operated at a 12-h hydraulic residence time and was located in the Headworks building of the Plum Creek Water Reclamation Authority. The average influent was TSS = 510 ± 400 mg/L, BOD5 = 320 ± 80 mg/L and the average removal of TSS and BOD5 was 83 ± 10% and 47 ± 15%, respectively. The TSS and BOD removal exceeded that of conventional primary clarification, with no wasting of the settled solids over the two-years and stoichiometric production of methane. The estimated energy content of the biogas produced per unit volume of wastewater treated averaged 0.45 kWh/m(3). The TSS and total COD removal in the first cell averaged 75 ± 15% and 43 ± 14%, respectively, but methane production was only 20% of the total observed for the full ABR. The performance of the ABR relative to the extent of solids hydrolysis and methane production can be varied by the number of cells and hydraulic residence time. The anaerobic baffled reactor is an energy-positive technology that can be used for biologically enhanced primary treatment of raw municipal wastewater in cold climates.


Subject(s)
Biofuels/analysis , Methane/metabolism , Waste Disposal, Fluid/methods , Wastewater/analysis , Anaerobiosis , Bioreactors , Pilot Projects , Temperature , Waste Management
15.
Article in English | MEDLINE | ID: mdl-25560263

ABSTRACT

In this study, the abundance and sequences of the amoA gene in ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were defined in three wastewater treatment plants using activated sludge with biological nitrogen removal in different countries: Thailand, United States of America (USA), and Japan. Quantitative real-time polymerase chain reaction (PCR) and PCR coupled with denaturing gradient gel electrophoresis were used to find the comparative abundance and identity of AOB and AOA. The conditions at the Phuket WWTP in Thailand promoted the dominance of AOA amoA genes over AOB amoA genes, while conditions at the WWTPs in Japan and USA promoted growth of AOB. Three parameters that may have contributed to the AOA dominance in Phuket were longer SRT, higher temperature, and higher pH. The Phuket WWTP is a unique system that can be used to better understand the conditions that promote AOA growth and dominance over AOB. In addition, analysis of operational data in conjunction with AOA and AOB community structure from the Phuket WWTP may elucidate advantages of AOA in meeting stricter treatment standards.


Subject(s)
Ammonia/metabolism , Archaea/isolation & purification , Archaea/metabolism , Bacteria/metabolism , Sewage/microbiology , Waste Disposal, Fluid/methods , Archaea/classification , Bacteria/classification , Bacteria/isolation & purification , Bacterial Load , Biota , Japan , Oxidation-Reduction , Thailand , United States
16.
Interchange (Tor : 1984) ; 42(2): 105-136, 2011 May.
Article in English | MEDLINE | ID: mdl-27976754

ABSTRACT

Where you live should have something to do with what you teach. In the Arctic, this idea of place-based education-teaching and sharing knowledge that is needed to live well- is central to the UARCTIC consortium and the 4th International Polar Year educational reform effort. A place-based issue oriented context can engage students in chemistry concepts when it intersects with their experience and lives. This article examines the rationale and means of integrating local concerns such as world view, culture, traditional knowledge and policy into both general and specialized chemistry courses. More broadly, capacious place-based issues should be widely adapted by all curriculum reform efforts to demonstrate the connectivity between science and societal understanding of technological options. A case in point is the inclusion of indigenous perspectives in a non-majors general chemistry course when the concepts of scientific method, ice and water resources, genetic engineering, etc. are discussed. In a specialized course on radioactivity in the north, topics connected nuclear chemistry and radioactivity to people and energy. The local landscape should be central to science courses and involve issues relevant to stewardship, a component of the indigenous world view. The historical issues can be connected to current nuclear energy and uranium mining as they relate to the risks and benefits for the local community. This article will make the case that curriculum reform that focuses on real-world topics will not only engage students so that they perform well in class but also spark their interest so that they continue learning after the course is over.

17.
Water Res ; 39(18): 4537-51, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16213004

ABSTRACT

Permeable reactive barrier (PRB) technology, in which sulfate-reducing bacteria (SRB) facilitate precipitation of metal sulfides, is a promising approach for remediation of sulfate- and metal-laden mine drainage. While PRBs are easily established, they often decline for reasons not well understood. SRB depend on or compete with multiple dynamic microbial populations within a PRB; as a result, performance depends on the changing PRB chemical composition and on succession and competition within the microbial community. To investigate these interactions, we constructed and monitored eight bench-scale PRBs to define periods of establishment, performance, and decline. We then conducted short-term batch studies, using substrate-supplemented column materials, on Days 0 (pre-establishment), 27 (establishment), 41 (performance), and 99 (decline) to reveal potential activities of cellulolytic bacteria, fermenters + anaerobic respirers, SRB, and methanogens. PRBs showed active sulfate reduction, with sulfate removal rates (SRR) of approximately 1-3 mol/m3/d, as well as effective removal of Zn2+. Potential activities of fermentative + anaerobic respiratory bacteria were initially high but diminished greatly during establishment and dropped further during performance and decline. In contrast, potential SRB activity rose during establishment, peaked during performance, and diminished as performance declined. Potential methanogen activity was low; in addition, SRB-methanogen substrate competition was shown not to limit SRB activity. Cellulolytic bacteria showed no substrate limitation at any time. However, fermenters experienced substrate limitation by Day 0, SRB by Day 27, and methanogens by Day 41, showing the dependence of each group on upstream populations to provide substrates. All potential activities, except methanogenesis, were ultimately limited by cellulose hydrolysis; in addition, all potential activities except methanogenesis declined substantially by Day 99, showing that long-term substrate deprivation strongly diminished the intrinsic capacity of the PRB community to perform.


Subject(s)
Mining , Sulfur-Reducing Bacteria/metabolism , Water Microbiology , Water Pollutants, Chemical/metabolism , Water Purification/methods , Alkalies/chemistry , Biodegradation, Environmental , Chemical Precipitation , Fermentation , Hydrogen/chemistry , Kinetics , Metals, Heavy/chemistry , Metals, Heavy/isolation & purification , Metals, Heavy/metabolism , Microbial Viability , Sulfates/chemistry , Sulfates/isolation & purification , Sulfur-Reducing Bacteria/growth & development
18.
Environ Sci Technol ; 39(9): 3215-25, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15926572

ABSTRACT

The influence of decomposing organic solids on sulfate (S04(2-)) reduction rates for metals precipitation in sulfate-reducing systems, such as in bioreactors and permeable reactive barriers for treatment of acid mine drainage, is modeled. The results are evaluated by comparing the model simulations with published experimental data for two single-substrate and two multiple-substrate batch equilibrium experiments. The comparisons are based on the temporal trends in SO4(2-), ferrous iron (Fe2+), and hydrogen sulfide (H2S) concentrations, as well as on rates of sulfate reduction. The temporal behaviors of organic solid materials, dissolved organic substrates, and different bacterial populations also are simulated. The simulated results using Contois kinetics for polysaccharide decomposition, Monod kinetics for lactate-based sulfate reduction, instantaneous or kinetically controlled precipitation of ferrous iron mono-sulfide (FeS), and partial volatilization of H2S to the gas phase compare favorably with the experimental data. When Contois kinetics of polysaccharide decomposition is replaced by first-order kinetics to simulate one of the single-substrate batch experiments, a comparatively poorer approximation of the rates of sulfate reduction is obtained. The effect of sewage sludge in boosting the short-term rate of sulfate reduction in one of the multiple-substrate experiments also is approximated reasonably well. The results illustrate the importance of the type of kinetics used to describe the decomposition of organic solids on metals precipitation in sulfate-reducing systems as well as the potential application of the model as a predictive tool for assisting in the design of similar biochemical systems.


Subject(s)
Iron/chemistry , Models, Theoretical , Sulfates/chemistry , Water Purification/methods , Bioreactors , Chemical Precipitation , Kinetics , Membranes, Artificial , Mining , Permeability , Sewage/chemistry , Sulfates/metabolism
19.
Water Res ; 37(16): 4011-7, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12909121

ABSTRACT

Biofilm samples from a carbonaceous trickling filter (TF) were evaluated in bench scale reactors to determine their maximum potential denitrification rates. Intact, undisturbed biofilms were placed into 0.6 L bench-scale reactors filled with sterilized, primary clarifier effluent spiked with nitrate to a final concentration of 16-18 mg/L as N. Dissolved oxygen concentrations were maintained between 2 and 4 mg/L in the bulk aqueous phase. Nitrate loss from the reactors was monitored over a 5h period. Denitrification rates of 3.09-5.55 g-N/m(2)day were observed with no initial lag period. This suggests that the capacity for denitrification is inherent in the biofilm and that denitrification can take place even when oxygen is present in the bulk aqueous phase. There were no significant differences in denitrification rates per unit area of media (g-N/m(2)day) either between (a). experimental runs or (b). sampling locations over the trickling filter. This suggests that denitrification potentials are uniform over the entire volume of the full-scale TF. For wastewater treatment plants with TFs that currently nitrify downstream, this approach may be used to meet less stringent permitted discharge concentrations and may allow some facilities to postpone or eliminate construction of additional unit processes for denitrification.


Subject(s)
Bioreactors , Nitrogen/isolation & purification , Waste Disposal, Fluid/methods , Water Purification/methods , Biofilms , Carbon/chemistry , Filtration , Nitrogen/chemistry
20.
Water Environ Res ; 75(3): 196-204, 2003.
Article in English | MEDLINE | ID: mdl-12837025

ABSTRACT

The effect of alkalinity on nitrifying biofilm activity was determined by collecting 21-day-old biofilm samples from the top of a full-scale nitrifying trickling filter and evaluating bench-scale nitrate plus nitrite generation rates at (1) various initial carbonate alkalinity concentrations and (2) with four types of available alkalinity: carbonate only, phosphate only, phosphate plus hydroxide, and phosphate plus carbonate. Initial carbonate alkalinity concentrations were varied between 308 and 20 mg/L as calcium carbonate (CaCO3). Ammonia, nitrite, and nitrate concentrations were measured at time zero, 90 minutes, 180 minutes, and 270 minutes. Generation rates in grams of nitrogen per square meter per day were calculated for each time period and normalized against dry-weight biomass. Generation rates were impaired at initial carbonate alkalinity concentrations of 40 mg/L and lower (as CaCO3) and were unaffected at concentrations of 45 mg/L and greater. For reactor runs with different alkalinity types, ammonia, nitrite, and nitrate concentrations were measured at time zero and at 375 minutes. The type of alkalinity, carbonate versus phosphate, affected nitrification rates. When the carbonate alkalinity was less than 45 mg/L, nitrification rates were impaired regardless of the total alkalinity concentration. This effect seems to be independent of pH for the range of 6.92 to 7.99 evaluated here. This suggests that in addition to neutralizing the acid generated by the nitrification process, a minimum level of carbonate alkalinity is necessary to meet the ammonia-oxidizer's inorganic carbon requirement for cellular synthesis and growth.


Subject(s)
Biofilms , Nitrogen/metabolism , Bioreactors , Hydrogen-Ion Concentration , Nitrates/analysis , Nitrites/analysis , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...