Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Biodegradation ; 33(4): 333-348, 2022 08.
Article in English | MEDLINE | ID: mdl-35524898

ABSTRACT

Vinasse is a high pollutant liquid residue from bioethanol production. Due to its toxicity, most vinasse is used not disposed of in water bodies but employed for the fertigation of sugarcane crops, potentially leading to soil salinization or heavy metal deposition. The anaerobic digestion of vinasse for energy production is the main alternative to fertigation, but the process cannot eliminate colored compounds such as melanoidins, caramels, or phenolic compounds. The treatment of raw vinasse with white-rot fungi could remove colored and persistent toxic compounds, but is generally considered cost-ineffective. We report the treatment of vinasse by an autochthonous Trametes sp. strain immobilized in polyurethane foam and the concomitant production of high titers of laccase, a high value-added product that could improve the viability of the process. The reuse of the immobilized biomass and the discoloration of raw vinasse, the concentration of phenolic compounds, BOD and COD, and the phytotoxicity of the treated vinasse were measured to assess the viability of the process and the potential use of treated vinasse in fertigation or as a complementary treatment to anaerobic digestion. Under optimal conditions (vinasse 0.25X, 30 °C, 21 days incubation, 2% glucose added in the implantation stage), immobilized Trametes sp. causes a decrease of 75% in vinasse color and total phenolic compounds, reaching 1082 U L-1 of laccase. The fungi could be used to treat 0.50X vinasse (BOD 44,400 mg O2 L-1), causing a 26% decolorization and a 30% removal of phenolic compounds after 21 days of treatment with maximum laccase titers of 112 U L-1, while reducing COD and BOD from 103,290 to 42,500 mg O2 L-1 (59%) and from 44,440 to 21,230 mg O2 L-1 (52%), respectively. The re-utilization of immobilized biomass to treat 0.50X vinasse proved to be successful, leading to the production of 361 U L-1 of laccase with 77% decolorization, 61% degradation of phenolic compounds, and the reduction of COD and BOD by 75% and 80%, respectively. Trametes sp. also reduced vinasse phytotoxicity to Lactuca sativa seedlings. The obtained results show that the aerobic treatment of vinasse by immobilized Trametes sp. is an interesting technology that could be employed as a sole treatment for the bioremediation of vinasse, with the concomitant the production of laccase. Alternatively, the methodology could be used in combination with anaerobic digestion to achieve greater decolorization and reduction of phenolic compounds, melanoidins, and organic load.


Subject(s)
Saccharum , Trametes , Biodegradation, Environmental , Laccase/metabolism , Phenols/metabolism , Polyurethanes , Saccharum/metabolism , Trametes/metabolism
2.
Chemosphere ; 208: 139-148, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29864705

ABSTRACT

Industrial applications and commercial processes release a lot of chromium into the environment (soil, surface water or atmosphere) and resulting in serious human diseases because of their toxicity. Biological Cr-removal offers an alternative to traditional physic-chemical methods. This is considered as a sustainable technology of lower impact on the environment. Resistant microorganisms (e.g. bacteria, fungi, and algae) have been most extensively studied from this characteristic. Several mechanisms were developed by microorganisms to deal with chromium toxicity. These tools include biotransformation (reduction or oxidation), bioaccumulation and/or biosorption, and are considered as an alternative to remove the heavy metal. The aim of this review is summarizes Cr(VI)-bioremediation technologies oriented on practical applications at larger scale technologies. In the same way, the most relevant results of several investigations focused on process feasibility and the robustness of different systems (reactors and pilot scale) designed for chromium-removal capacity are highlighted.


Subject(s)
Biodegradation, Environmental , Chromium/isolation & purification , Environmental Pollutants/isolation & purification , Chromium/analysis , Environmental Pollutants/analysis , Humans , Waste Disposal, Fluid
3.
Environ Technol ; 39(24): 3169-3180, 2018 Dec.
Article in English | MEDLINE | ID: mdl-28859550

ABSTRACT

Trichosporon akiyoshidainum HP2023 is a basidiomycetous yeast isolated from Las Yungas rainforest (Tucumán, Argentina) and selected based on its outstanding textile-dye-decolorizing ability. In this work, the decolorization process was optimized using Reactive Black 5 as dye model. Lactose and urea were chosen as carbon and nitrogen sources through a one-at-time approach. Afterwards, factorial designs were employed for medium optimization, leading to the formulation of a simpler optimized medium which contains in g L-1: lactose 10, yeast extract 1, urea 0.5, KH2PO4 1 and MgSO4 1. Temperature and agitation conditions were also optimized. The optimized medium and incubation conditions for dye removal were extrapolated to other dyes individually and a mixture of them. Dye removal process happened through both biosorption and biodegradation mechanisms, depending primarily on the dye structure. A positive relation between initial inoculum and dye removal rate and a negative relation between initial dye concentration and final dye removal percentages were found. Under optimized conditions, T. akiyoshidainum HP2023 was able to completely remove a mixture of dyes up to a concentration of 300 mg L-1, a concentration much higher than those expected in real effluents.


Subject(s)
Coloring Agents , Trichosporon , Argentina , Biodegradation, Environmental , Yeasts
4.
Ecotoxicol Environ Saf ; 148: 490-500, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29121591

ABSTRACT

Cyberlindnera jadinii M9 and Wickerhamomyces anomalus M10 isolated from textile-dye liquid effluents has shown capacity for chromium detoxification via Cr(VI) biological reduction. The aim of the study was to evaluate the effect of hexavalent chromium on synthesis of novel and/or specific proteins involved in chromium tolerance and reduction in response to chromium overload in two indigenous yeasts. A study was carried out following a proteomic approach with W. anomalus M10 and Cy. jadinii M9 strains. For this, proteins extracts belonging to total cell extracts, membranes and mitochondria were analyzed. When Cr(VI) was added to culture medium there was an over-synthesis of 39 proteins involved in different metabolic pathways. In both strains, chromium supplementation changed protein biosynthesis by upregulating proteins involved in stress response, methionine metabolism, energy production, protein degradation and novel oxide-reductase enzymes. Moreover, we observed that Cy. jadinii M9 and W. anomalus M10 displayed ability to activate superoxide dismutase, catalase and chromate reductase activity. Two enzymes from the total cell extracts, type II nitroreductase (Frm2) and flavoprotein wrbA (Ycp4), were identified as possibly responsible for inducing crude chromate-reductase activity in cytoplasm of W. anomalus M10 under chromium overload. In Cy.jadinii M9, mitochondrial Ferredoxine-NADP reductase (Yah1) and membrane FAD flavoprotein (Lpd1) were identified as probably involved in Cr(VI) reduction. To our knowledge, this is the first study proposing chromate reductase activity of these four enzymes in yeast and reporting a relationship between protein synthesis, enzymatic response and chromium biospeciation in Cy. jadinii and W. anomalus.


Subject(s)
Chromium/toxicity , Industrial Waste , Proteomics , Textile Industry , Yeasts/enzymology , Yeasts/genetics , Biodegradation, Environmental , Catalase/genetics , Catalase/metabolism , Coloring Agents , Culture Media/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Methionine/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Saccharomycetales/enzymology , Saccharomycetales/isolation & purification , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Yeasts/isolation & purification
5.
J Environ Sci (China) ; 53: 78-87, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372763

ABSTRACT

Azo dyes are extensively used in textile dyeing and other industries. Effluents of dying industries are specially colored and could cause severe damage to the environment. The anaerobic treatment of textile dying effluents is nowadays the preferred option, but it could generate carcinogenic aromatic amines. Recently, yeasts have become a promising alternative, combining unicellular growth with oxidative mechanisms. This work reports the characterization of the first methylotrophic yeast with dye decolorizing ability, Candida boidinii MM 4035 and some insights into its decoloration mechanism. The analysis of two selected media revealed a possible two stages mechanism of Reactive Black 5 decoloration. In glucose poor media, decoloration is incomplete and only the first stage proceeds, leading to the accumulation of a purple compound. In media with higher glucose concentrations, the yeast is able to decolorize totally an initial concentration of 200mg/L. The entire process is co-metabolic, being largely dependent on glucose concentration but being able to proceed with several nitrogen sources. Manganese dependent peroxidase but not laccase activity could be detected during decoloration. Aromatic amines do not accumulate in culture media, supporting an oxidative decoloration mechanism of unknown ecophysiological relevance.


Subject(s)
Candida/physiology , Naphthalenesulfonates/metabolism , Textile Industry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Industrial Waste , Naphthalenesulfonates/analysis , Textiles , Water Pollutants, Chemical/analysis
6.
J Basic Microbiol ; 56(12): 1360-1368, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27283113

ABSTRACT

The capability of 17 Rhodotorula spp. isolated from Antarctica to accumulate intracellular lipids in nitrogen-limited medium was investigated. As results, 10 isolates were selected by Nile red staining, while 12 isolates were selected as oleaginous by analysis of total lipid content (20.4-73%, w/w of dry biomass). The higher lipid production and accumulation was exhibited for six strains belonging to three species of Rhodotorula (Rhodotorula glutinis, Rhodotorula glacialis, and Rhodotorula laryngis). This is the first report where R. laryngis have been identified within oleaginous specie. Lipid accumulation was evaluated comparatively in two nitrogen-limited glucose-based media (MI and MII). MI (low C/N ratio) was more suitable for biomass and lipid production while in MII (high C/N ratio) total lipid content was improved. R. glutinis R4, R. glacialis R15, and R. glutinis R48 showed high lipid concentrations (4.65-6.93 g L-1 ) and they were able to accumulate large amounts of lipids per gram of biomass (47-77%, w/w). A similar profile in fatty acids composition and content of neutral lipids to vegetable oils was observed, indicating that lipids produced by oleaginous Antarctic yeasts can be considered an alternative feedstock for biodiesel production. Antarctica represents an important source of oleaginous yeasts with adaptive capabilities to accumulate considerable amounts of lipids with biotechnological interest at 15 °C and 25 °C.


Subject(s)
Lipids/biosynthesis , Rhodotorula/metabolism , Yeasts/isolation & purification , Yeasts/metabolism , Antarctic Regions , Biofuels , Biomass , Fatty Acids/analysis , Glucose/metabolism , Industrial Microbiology , Lipids/chemistry , Nitrogen/metabolism , Rhodotorula/isolation & purification , Yeasts/chemistry , Yeasts/classification
7.
Rev Argent Microbiol ; 48(2): 166-70, 2016.
Article in Spanish | MEDLINE | ID: mdl-27237424

ABSTRACT

Candida fukuyamaensis RCL-3 yeast has the ability to decrease copper concentration in a culture medium. High copper concentrations change the cell color from white/cream to brown. The effect of color change ceases with the addition of KCN or when cells are grown in a culture medium without sulfate ions. These results could be associated with CuS bioaccumulation in the cell surface. This report revealed that mineralization would be a mechanism used by this yeast for copper bioremediation.


Subject(s)
Candida/metabolism , Copper/metabolism , Biodegradation, Environmental , Biotransformation , Candida/drug effects , Color , Copper Sulfate/metabolism , Crystallization , Culture Media/metabolism , Potassium Cyanide/pharmacology , Sulfates/pharmacology
8.
J Basic Microbiol ; 56(7): 698-710, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26568043

ABSTRACT

Candida fukuyamaensis RCL-3 yeast strain isolated from a copper filter plant is able to lower copper concentration in culture medium. In the present study, effect of copper in proteins expression and mechanisms involved in copper resistance were explored using comparative proteomics. Mono-dimensional gel electrophoresis revealed differential band expressions between cells grown with or without copper. 2-DE analysis of C. fukuyamaensis RCL-3 revealed that copper exposure produced at least an over-expression of 40 proteins. Sixteen proteins were identified and grouped in four categories according to their functions: glycolysis and ATP production, synthesis of proteins, oxidative stress response, and processing and transport of proteins. Integral membrane proteins and membrane-associated proteins were analyzed, showing nine protein bands over-expressed in Cu-supplemented medium. Four proteins were identified, namely nucleoporin pom152, elongation factor 2, copper chaperone Sod1 Ccs1, and eiosome component Lsp1. The proteomic analysis performed allowed the identification of different metabolic pathways and certain proteins involved in metal input and storage related to cell ability to bioremediate copper. These proteins and mechanisms could be used for future applications of C. fukuyamaensis RCL-3 in biotechnological processes such as remediation of heavy metals.


Subject(s)
Biodegradation, Environmental , Candida/metabolism , Copper/metabolism , Membrane Proteins/metabolism , Candida/genetics , Metabolic Networks and Pathways/genetics , Molecular Chaperones/genetics , Nuclear Pore Complex Proteins/genetics , Oxidative Stress , Peptide Elongation Factor 2/genetics , Proteomics , Superoxide Dismutase-1/genetics
9.
Res Microbiol ; 165(7): 549-58, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25049167

ABSTRACT

Gluconic acid is produced in large quantities by the endophytic and diazotrophic bacterium Gluconacetobacter diazotrophicus Pal5. This organic acid derives from direct oxidation of glucose by a pyrroloquinoline-quinone-linked glucose dehydrogenase in this plant growth-promoting bacterium. In the present article, evidence is presented showing that gluconic acid is also responsible for the antimicrobial activity of G. diazotrophicus Pal5. The broad antagonistic spectrum includes Gram-positive and -negative bacteria. Eukaryotic microorganisms are more resistant to growth inhibition by this acid. Inhibition by gluconic acid can be modified through the presence of other organic acids. In contrast to other microorganisms, the Quorum Sensing system of G. diazotrophicus Pal5, a regulatory mechanism that plays a key role in several microbe-microbe interactions, is not related to gluconic acid production and the concomitant antagonistic activity.


Subject(s)
Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Gluconacetobacter/metabolism , Gluconates/metabolism , Gluconates/pharmacology , Eukaryota/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests
10.
Antonie Van Leeuwenhoek ; 106(3): 497-506, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24974195

ABSTRACT

The endophytic bacterium Gluconacetobacter diazotrophicus colonizes a broad range of host plants. Its plant growth-promoting capability is related to the capacity to perform biological nitrogen fixation, the biosynthesis of siderophores, antimicrobial substances and the solubilization of mineral nutrients. Colonization of and survival in these endophytic niche requires a complex regulatory network. Among these, quorum sensing systems (QS) are signaling mechanisms involved in the control of several genes related to microbial interactions, host colonization and stress survival. G. diazotrophicus PAL5 possesses a QS composed of a luxR and a luxI homolog, and produces eight molecules from the AHL family as QS signals. In this report data are provided showing that glucose concentration modifies the relative levels of these signal molecules. The activity of G. diazotrophicus PAL5 QS is also altered in presence of other carbon sources and under saline stress conditions. Inactivation of the QS system of G. diazotrophicus PAL5 by means of a quorum quenching strategy allowed the identification of extracellular and intracellular proteins under the control of this regulatory mechanism.


Subject(s)
Gluconacetobacter/drug effects , Gluconacetobacter/physiology , Glucose/metabolism , Quorum Sensing/drug effects , Carbon/metabolism , Gene Regulatory Networks , Gluconacetobacter/genetics , Plants/microbiology
11.
Yeast ; 30(11): 459-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24298603

ABSTRACT

Antarctica offers a range of extreme climatic conditions, such as low temperatures, high solar radiation and low nutrient availability, and constitutes one of the harshest environments on Earth. Despite that, it has been successfully colonized by 'cold-loving' fungi, which play a key role in decomposition cycles in cold ecosystems. However, knowledge about the ecological role of yeasts in nutrient or organic matter recycling/mineralization remains highly fragmentary. The aim of this work was to study the yeast microbiota in samples collected on 25 de Mayo/King George Island regarding the scope of their ability to degrade polyphenolic substrates such as lignin and azo dyes. Sixty-one yeast isolates were obtained from 37 samples, including soil, rocks, wood and bones. Molecular analyses based on rDNA sequences revealed that 35 yeasts could be identified at the species level and could be classified in the genera Leucosporidiella, Rhodotorula, Cryptococcus, Bullera and Candida. Cryptococcus victoriae was by far the most ubiquitous species. In total, 33% of the yeast isolates examined showed significant activity for dye decolorization, 25% for laccase activity and 38% for ligninolytic activity. Eleven yeasts did not show positive activity in any of the assays performed and no isolates showed positive activity across all tested substrates. A high diversity of yeasts were isolated in this work, possibly including undescribed species and conspicuous Antarctic yeasts, most of them belonging to oligotrophic, slow-growing and metabolically diverse basidiomycetous genera.


Subject(s)
Coloring Agents/metabolism , Lignin/metabolism , Polyphenols/metabolism , Yeasts/isolation & purification , Yeasts/metabolism , Antarctic Regions , Biodegradation, Environmental , Environmental Microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Laccase/genetics , Laccase/metabolism , Molecular Sequence Data , Phylogeny , Yeasts/classification , Yeasts/enzymology
12.
Carbohydr Polym ; 94(1): 496-504, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23544567

ABSTRACT

Aqueous solutions (0.2%, w/v) of scleroglucans from Sclerotium rolfsii ATCC 201126 from different cultivation time or purification protocol (EPS I, EPS II, EPSi) as well as a commercial scleroglucan (LSCL) exhibited different sensitivity against thermal (65, 95 and 150°C), ultrasonic (1, 5 and 10 min; 20% amplitude) or alkaline (0.01-0.2 N NaOH) treatments. Scleroglucan triple helix usually showed signs of denaturation at 150°C or with 0.2 NaOH with a pronounced decrease in apparent viscosity and loss of pseudoplastic behavior. Differences in sensitivity could be noted depending on the scleroglucan sample, which may be likely related to polysaccharide conformational features, and these latter to production and/or downstream processing conditions. Transmission electron microscopy showed scleroglucan topologies in accordance with thermal and alkaline denaturation. Size exclusion chromatography of control scleroglucans revealed elution profiles compatible with macromolecular aggregates which tended to diminish or disappear as thermal, alkali or sonication treatments progressed. Scleroglucan granule dissolution process took ∼8-14 s, according to DIC-light microscopy, and showed to be facilitated by addition of NaOH.


Subject(s)
Fungal Polysaccharides/chemistry , Glucans/chemistry , Basidiomycota/chemistry , Chromatography, Gel , Fermentation , Fungal Polysaccharides/isolation & purification , Glucans/isolation & purification , Hydrogen-Ion Concentration , Solutions , Sonication , Temperature , Viscosity/radiation effects
13.
Carbohydr Polym ; 92(2): 1107-15, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23399135

ABSTRACT

Thickening capacity and compatibility of scleroglucan with commercial thickeners (corn starch, gum arabic, carboxymethylcellulose, gelatin, xanthan and pectin), glycols (ethylene glycol and polyethylene glycol), alcohols (methanol, ethanol, 1-propanol and isopropanol) and polyalcohols (sorbitol, xylitol and mannitol) was explored. Exopolysaccharides (EPSs) from Sclerotium rolfsii ATCC 201126 and a commercial scleroglucan were compared. Compatibility and synergism were evaluated taking into account rheology, pH and sensory properties of different thickener/scleroglucan mixtures in comparison with pure solutions. S. rolfsii ATCC 201126 EPSs induced or increased pseudoplastic behaviour with a better performance than commercial scleroglucan, showing compatibility and synergy particularly with corn starch, xanthan, pectin and carboxymethylcellulose. Compatibility and a slight synergistic behaviour were also observed with 30% (w/v) ethylene glycol whereas mixtures with polyethylene glycol (PEG) precipitated. Scleroglucan was compatible with polyalcohols, whilst lower alcohols led to scleroglucan precipitation at 20% (v/v) and above. PEG-based scleroglucan downstream processing was compared to the usual alcohol precipitation. Downstream processed EPSi (with isopropanol) and EPS-p (with PEG) were evaluated on their yield, purity, rheological properties and visual aspect pointing to alcohol downstream processing as the best methodology, whilst PEG recovery would be unsuitable. The highest purified EPSi attained a recovery yield of ~23%, similar to ethanol purification, with a high degree of purity (88%, w/w vs. EPS-p, 8%, w/w) and exhibited optimal rheological properties, water solubility and appearance. With a narrower molecular weight distribution (M(w), 2.66×10(6) g/mol) and a radius of gyration (R(w), 245 nm) slightly lower than ethanol-purified EPSs, isopropanol downstream processing showed to be a proper methodology for obtaining a refined-grade scleroglucan.


Subject(s)
Food Additives/chemistry , Food Handling , Glucans/chemistry , Sugar Alcohols/chemistry , Glycols/chemistry , Molecular Weight , Rheology
14.
Rev. iberoam. micol ; 30(1): 31-38, ene. 2013.
Article in Spanish | IBECS | ID: ibc-109129

ABSTRACT

Fundamento. La frecuencia de micosis oportunistas y la resistencia a los antimicóticos convencionales han fomentado la búsqueda de nuevas alternativas terapéuticas, como las combinaciones de antimicóticos. Objetivos. El presente estudio trató de detectar el sinergismo antifúngico entre las estatinas y los azólicos mediante un bioanálisis de difusión en pocillos de agar, utilizando Saccharomyces cerevisiae (S. cerevisiae) ATCC 32051 y Candida utilis (C. utilis) PR1-2 como cepas de control. Métodos. Los efectos antifúngicos sinérgicos se examinaron mediante la adición simultánea de una concentración sub-inhibitoria (CSI) de estatina (atorvastatina, lovastatina, pravastatina, rosuvastatina o simvastatina) más una concentración mínima inhibitoria (CMI) de un azólico (clotrimazol, fluconazol, itraconazol, ketoconazol o miconazol) a placas de agar YNB con las levaduras sembradas por inclusión. Un resultado positivo correspondió a un diámetro del halo de inhibición del crecimiento de la levadura mayor que el producido por la CMI del azólico exclusivo. Para confirmar el sinergismo estatina-azólico, se cuantificó el ergosterol de la membrana celular de las levaduras con cromatografía líquida de alto rendimiento (HPLC-RP). Para valorar la inhibición de la síntesis de ergosterol inducida por estatinas, se emplearon bioanálisis de rescate de ergosterol. Resultados. La inhibición del crecimiento aumentó significativamente cuando se combinaron clotrimazol, fluconazol, itraconazol, ketoconazol y miconazol con atorvastatina, lovastatina, rosuvastatina y simvastatina. Los mayores incrementos de la inhibición del crecimiento se observaron en S. cerevisiae (77,5%) y C. utilis (43,2%) con una CSI de simvastatina y una CMI de miconazol de 4+2,4mg/ml o 20+4,8mg/ml, respectivamente. Para pravastatina apenas se identificaron efectos significativos (incremento de la inhibición del 0-7,6%). Los mayores cocientes de interacción correspondieron a la combinación de simvastatina y miconazol y fueron indicativos de sinergismo. Este también se confirmó por la mayor disminución de los niveles celulares de ergosterol (S. cerevisiae, 40% y C. utilis, 22%). La inhibición de la síntesis de ergosterol inducida por estatinas se corroboró mediante bioanálisis de rescate de ergosterol, donde la inhibición por pravastatina se abolió con facilidad, mientras que la de rosuvastatina fue la más refractaria. Conclusiones. Las combinaciones seleccionadas de estatinas y azólicos podrían ser alternativas viables para el manejo terapéutico de las micosis, en dosis más bajas o con una mayor eficiencia(AU)


Background. Frequent opportunist fungal infections and the resistance to available antifungal drugs promoted the development of new alternatives for treatment, like antifungal drug combinations. Aims. This work aimed to detect the antifungal synergism between statins and azoles by means of an agar-well diffusion bioassay with Saccharomyces cerevisiae ATCC 32051 and Candida utilis Pr1–2 as test strains. Methods. Synergistic antifungal effects were tested by simultaneously adding a sub inhibitory concentration (SIC) of statin (atorvastatin, lovastatin, pravastatin, rosuvastatin or simvastatin) plus a minimal inhibitory concentration (MIC) of azole (clotrimazole, fluconazole, itraconazole, ketoconazole or miconazole) to yeast-embedded YNB agar plates, and a positive result corresponded to a yeast growth inhibition halo higher than that produced by the MIC of the azole alone. Yeast cell ergosterol quantification by RP-HPLC was used to confirm statin–azole synergism, and ergosterol rescue bioassays were performed for evaluating statin-induced ergosterol synthesis blockage. Results. Growth inhibition was significantly increased when clotrimazole, fluconazole, itraconazole, ketoconazole and miconazole were combined with atorvastatin, lovastatin, rosuvastatin and simvastatin. Highest growth inhibition increments were observed on S. cerevisiae (77.5%) and C. utilis (43.2%) with a SIC of simvastatin plus a MIC of miconazole, i.e. 4+2.4mg/ml or 20+4.8mg/ml, respectively. Pravastatin showed almost no significant effects (0–7.6% inhibition increase). Highest interaction ratios between antifungal agents corresponded to simvastatin–miconazole combinations and were indicative of synergism. Synergism was also confirmed by the increased reduction in cellular ergosterol levels (S. cerevisiae, 40% and C. utilis, 22%). Statin-induced ergosterol synthesis blockage was corroborated by means of ergosterol rescue bioassays, pravastatin being the most easily abolished inhibition whilst rosuvastatin being the most ergosterol-refractory. Conclusions. Selected statin–azole combinations might be viable alternatives for the therapeutic management of mycosis at lower administration doses or with a higher efficiency(AU)


Subject(s)
Opportunistic Infections/microbiology , Antibodies, Fungal/therapeutic use , Antifungal Agents/therapeutic use , Saccharomyces cerevisiae/isolation & purification , Ergosterol/analysis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Candida/isolation & purification , Pravastatin/therapeutic use , Azoles/isolation & purification , Azoles/pharmacokinetics , Azoles/therapeutic use , Simvastatin/therapeutic use
15.
Rev Iberoam Micol ; 30(1): 31-8, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-23069981

ABSTRACT

BACKGROUND: Frequent opportunist fungal infections and the resistance to available antifungal drugs promoted the development of new alternatives for treatment, like antifungal drug combinations. AIMS: This work aimed to detect the antifungal synergism between statins and azoles by means of an agar-well diffusion bioassay with Saccharomyces cerevisiae ATCC 32051 and Candida utilis Pr(1-2) as test strains. METHODS: Synergistic antifungal effects were tested by simultaneously adding a sub inhibitory concentration (SIC) of statin (atorvastatin, lovastatin, pravastatin, rosuvastatin or simvastatin) plus a minimal inhibitory concentration (MIC) of azole (clotrimazole, fluconazole, itraconazole, ketoconazole or miconazole) to yeast-embedded YNB agar plates, and a positive result corresponded to a yeast growth inhibition halo higher than that produced by the MIC of the azole alone. Yeast cell ergosterol quantification by RP-HPLC was used to confirm statin-azole synergism, and ergosterol rescue bioassays were performed for evaluating statin-induced ergosterol synthesis blockage. RESULTS: Growth inhibition was significantly increased when clotrimazole, fluconazole, itraconazole, ketoconazole and miconazole were combined with atorvastatin, lovastatin, rosuvastatin and simvastatin. Highest growth inhibition increments were observed on S. cerevisiae (77.5%) and C. utilis (43.2%) with a SIC of simvastatin plus a MIC of miconazole, i.e. 4 + 2.4 µg/ml or 20 + 4.8 µg/ml, respectively. Pravastatin showed almost no significant effects (0-7.6% inhibition increase). Highest interaction ratios between antifungal agents corresponded to simvastatin-miconazole combinations and were indicative of synergism. Synergism was also confirmed by the increased reduction in cellular ergosterol levels (S. cerevisiae, 40% and C. utilis, 22%). Statin-induced ergosterol synthesis blockage was corroborated by means of ergosterol rescue bioassays, pravastatin being the most easily abolished inhibition whilst rosuvastatin being the most ergosterol-refractory. CONCLUSIONS: Selected statin-azole combinations might be viable alternatives for the therapeutic management of mycosis at lower administration doses or with a higher efficiency.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Saccharomyces cerevisiae/drug effects , Triazoles/pharmacology , Candida/growth & development , Candida/metabolism , Disk Diffusion Antimicrobial Tests , Drug Resistance, Fungal , Drug Synergism , Ergosterol/biosynthesis , Humans , In Vitro Techniques , Microbial Sensitivity Tests , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Species Specificity
16.
ScientificWorldJournal ; 2012: 708213, 2012.
Article in English | MEDLINE | ID: mdl-22629188

ABSTRACT

Resistance of the indigenous strains P. jadinii M9 and P. anomala M10, to high Cr(6+) concentrations and their ability to reduce chromium in culture medium was studied. The isolates were able to tolerate chromium concentrations up to 104 µg mL(-1). Growth and reduction of Cr(6+) were dependent on incubation temperature, agitation, Cr(6+) concentration, and pH. Thus, in both studied strains the chromium removal was increased at 30 °C with agitation. The optimum pH was different, with values of pH 3.0 and pH 7.0 in the case of P. anomala M10 and pH 7.0 using P. jadinii M9. Chromate reduction occurred both in intact cells (grown in culture medium) as well as in cell-free extracts. Chromate reductase activity could be related to cytosolic or membrane-associated proteins. The presence of a chromate reductase activity points out a possible role of an enzyme in Cr(6+) reduction.


Subject(s)
Chromium/metabolism , Industrial Waste/prevention & control , Pichia/metabolism , Textile Industry , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/metabolism , Water Purification/methods , Biodegradation, Environmental , Chromium/isolation & purification , Pichia/isolation & purification
17.
Yeast ; 29(3-4): 137-44, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22447575

ABSTRACT

Decolourization and degradation of the diazo dye Reactive Black 5 was carried out by the yeast Trichosporon akiyoshidainum. A nine-factor Plackett-Burman design was employed for the study and optimization of the decolourization process and production of manganese peroxidase (MnP) and tyrosinase activities. In the present study, 26 individual experiments were conducted and three responses were evaluated. Raising yeast extract concentration significantly enhanced decolourization and MnP production. Carbon and nitrogen sources, glucose and (NH4)2 SO4, showed no significant effect on any response over the concentration range tested. Other culture medium components, such as CaCl2 or MgSO4, could be excluded from the medium formula, as they had no effect on the evaluated responses. Metal ions (Fe, Cu and Mn) showed different effects on decolourization and enzymatic activities. Addition of copper significantly enhanced MnP activity and decreased dye decolourization. On the contrary, iron had a positive effect on decolourization and no effect on enzyme production. Oddly, increasing manganese concentration had a positive effect on tyrosinase production without affecting decolourization or MnP activity. These results strongly suggest that dye decolourization should be regarded as a complex multi-enzymatic process, where optimal medium composition should arise as a compromise between those optimal for each implied enzyme production.


Subject(s)
Culture Media/standards , Monophenol Monooxygenase/metabolism , Naphthalenesulfonates/metabolism , Peroxidases/metabolism , Trichosporon/enzymology , Biodegradation, Environmental , Coloring Agents/metabolism , Culture Media/metabolism , Enzyme Activation , Enzyme Assays , Fungal Proteins/metabolism , Manganese/metabolism , Trichosporon/metabolism
18.
Biometals ; 25(3): 517-27, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22391792

ABSTRACT

In order to understand the mechanism involved in Rhodotorula mucilaginosa RCL-11 resistance to copper a proteomic study was conducted. Atomic absorption spectroscopy showed that the copper concentration in the medium decreased from 0.5 to 0.19 mM 48 h after inoculation of the yeast. Analysis of one-dimensional gel electrophoresis of crude cell extracts revealed expression of differential bands between cells with and without copper. In order to study this difference, two-dimensional electrophoresis of R. mucilaginosa RCL-11 exposed to Cu for 16, 24, and 48 h was carried out. Identification of differentially expressed proteins was performed by MALDI-TOF/TOF. Ten of the 16 spots identified belonged to heat shock proteins. Superoxide dismutase, methionine synthase and beta-glucosidase were also found over-expressed at high copper concentrations. The results obtained in the present work show that when R. mucilaginosa RCL-11 is exposed to 0.5 mM copper, differential proteins, involved in cell resistance mechanisms, are expressed.


Subject(s)
Copper/pharmacology , Proteomics/methods , Rhodotorula/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Biodegradation, Environmental , Electrophoresis, Gel, Two-Dimensional , Rhodotorula/drug effects , Superoxide Dismutase/metabolism , beta-Glucosidase/metabolism
19.
Arch Microbiol ; 194(7): 615-22, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22350020

ABSTRACT

The endophytic diazotrophic Gluconacetobacter diazotrophicus PAL5 was originally isolated from sugarcane (Saccharum officinarum). The biological nitrogen fixation, phytohormones secretion, solubilization of mineral nutrients and phytopathogen antagonism allow its classification as a plant growth-promoting bacterium. The recent genomic sequence of PAL5 unveiled the presence of a quorum sensing (QS) system. QS are regulatory mechanisms that, through the production of signal molecules or autoinducers, permit a microbial population the regulation of the physiology in a coordinated manner. The most studied autoinducers in gram-negative bacteria are the N-acyl homoserine lactones (AHLs). The usage of biosensor strains evidenced the presence of AHL-like molecules in cultures of G. diazotrophicus PAL5 grown in complex and synthetic media. Analysis of AHLs performed by LC-APCI-MS permitted the identification of eight different signal molecules, including C6-, C8-, C10-, C12- and C14-HSL. Mass spectra confirmed that this diazotrophic strain also synthesizes autoinducers with carbonyl substitutions in the acyl chain. No differences in the profile of AHLs could be determined under both culture conditions. However, although the level of short-chain AHLs was not affected, a decrease of 30% in the production of long-chain AHLs could be measured in synthetic medium.


Subject(s)
Acyl-Butyrolactones/chemistry , Acyl-Butyrolactones/metabolism , Gluconacetobacter/chemistry , Gluconacetobacter/metabolism , Acyl-Butyrolactones/isolation & purification , Chromatography, Liquid , Culture Media/chemistry , Culture Media/metabolism , Mass Spectrometry
20.
Antonie Van Leeuwenhoek ; 99(3): 443-56, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20730563

ABSTRACT

Microcosm assays with dye-amended culture media under a shot-feeding strategy allowed us to obtain 100 yeast isolates from the wastewater outfall channel of a dyeing textile factory in Tucumán (Argentina). Meanwhile, 63 yeast isolates were obtained from Phoebe porphyria (Laurel del monte) samples collected from Las Yungas rainforest (Tucumán), via a classical isolation scheme. Isolated yeasts, both from dye-polluted and virgin environments, were compared for their textile dye decolourization ability when cultured on solid and liquid media. Nine isolates from wastewater and 17 from Las Yungas showed the highest decolourization potential on agar plates containing six different reactive dyes, either alone or as a mixture. Five yeasts from each environment were further selected on the basis of their high dye removal rate in Vilmafix(®) Red 7B-HE- or Vilmafix(®) Blue RR-BB-amended liquid cultures. Yeasts from wastewater showed slightly higher decolourization percentages after 36 h of culture than yeasts from Las Yungas (98-100% vs. 91-95%, respectively). However, isolates from Las Yungas exhibited higher specific decolourization rates than isolates from effluents (1.8-3.0 vs. 0.9-1.3 mg g(-1)h(-1), respectively). All selected isolates were first grouped according to microsatellite-PCR analysis and representative isolates from each group were subsequently identified based on the 26S rRNA gene sequence analysis. Yeasts from wastewater were identified as the ascomycetous Pichia kudriavzevii (100%) and closely related to Candida sorbophila (99.8%), whilst yeasts from Las Yungas were identified as the basidiomycetous Trichosporon akiyoshidainum and Trichosporon multisporum. It is suggested that findings concerning yeast selection during screening programs for dye-decolourizing yeasts may be explained in the light of the copiotroph-oligotroph microorganisms rationale.


Subject(s)
Coloring Agents/metabolism , Yeasts/classification , Yeasts/metabolism , Microsatellite Repeats/genetics , Polymerase Chain Reaction , RNA, Ribosomal/genetics , Yeasts/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...