Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Rev Argent Microbiol ; 55(4): 387-394, 2023.
Article in Spanish | MEDLINE | ID: mdl-37479608

ABSTRACT

Listeria monocytogenes is an opportunistic foodborne pathogen. It can resist stress conditions by adapting through the production of biofilms, which represents a serious problem for the food industry. It is classified into 14 serotypes, although only four (1/2a, 1/2b, 1/2c, and 4b) account for 89.0-98.0% of listeriosis cases worldwide. The objective of this study was to detect and serotype L.monocytogenes isolated from different food matrices from processing plants in Argentina. In the period 2016-2021, 1832 samples (meat, ready-to-eat foods, ice cream, dairy foods, and frozen vegetables) were analyzed, of which 226 (12.34%) isolates compatible with L.monocytogenes were detected. At the same time, environmental and surface samplings were performed in processing plants for ready-to-eat foods, sausages and dairy products, where environmental contamination with L.monocytogenes was detected in numerous critical points of the process, yielding a positivity rate of 22.7%. The molecular analysis of serogroups was performed, where it was observed that serogroup IIb was the most frequent with 66.5% (n=107), and in descending order IIc with 22.3% (n=36), and IIa (n=9) and IVb (n=9) with 5.6%. The serogroup mostly isolated in environmental monitoring was IIb. This work highlights the importance of the detection and serotyping of L.monocytogenes for taking actionable measures and identifying outbreaks, and is the first study in Argentina to describe an extensive study in food matrices.


Subject(s)
Listeria monocytogenes , Listeria monocytogenes/genetics , Serotyping , Food Contamination , Food Microbiology , Argentina/epidemiology , Polymerase Chain Reaction
2.
Prev Vet Med ; 176: 104933, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32105862

ABSTRACT

The slaughter process plays an important role in animal welfare, meat quality, safety and public health through the meat production chain. In this study, we performed a three-stage evaluation: I) comprehensive evaluation, II) implementation of improvement actions and III) verification of the success of the actions implemented in three abattoirs from Argentina during 2016-2018. Risk was estimated using two checklists, quantified on a 1-100 scale and classified as high (1-40), moderate (41-70) and low (71-100). In stages I and III, Salmonella spp., E. coli O157:H7 and non-O157 STEC were detected and isolated in samples from carcasses (n = 252), the environment (n = 252); head meat (n = 21) and viscera washing and chilling water (n = 105). Carcass samples were analyzed for mesophilic aerobic organisms, coliforms and E. coli enumeration. Of 201 water samples taken, 42.0-75.6 % were non-potable quality. After the implementation of improvement actions in stage II (building, processes, systems for water purification and training), the estimation of risk of contamination was reduced from high to moderate in all three abattoirs, the count of indicator microorganisms decreased in two abattoirs, and the presence of pathogens significantly decreased. Salmonella spp. was not isolated from any of the samples collected in two abattoirs. Isolation of E. coli O157:H7 decreased in carcass and was not isolated from viscera washing and chilling water. Isolation of non-O157 STEC decreased in carcass but not in environmental samples. Finally, 75.0-95.0 % of water samples were of potable quality. Although this was only the first step in the process of change and improvement of abattoirs, the assessment of the situation and the proposal of solutions to correct deviations in a joint effort with the health authorities helped to implement a work model for enhancing food safety before meat reaches consumers.


Subject(s)
Abattoirs , Food Microbiology , Meat/microbiology , Salmonella/isolation & purification , Shiga-Toxigenic Escherichia coli/isolation & purification , Animals , Argentina , Cattle , Risk Assessment
3.
Food Microbiol ; 84: 103273, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31421766

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) are important pathogens transmitted by food that may cause severe illness in human beings. Thus, systems for STEC detection in food should have increasingly higher sensitivity and specificity. Here we compared six commercial systems for non-O157 STEC detection in meat and vegetables and determined their sensitivity, specificity and repeatability. A total of 46 samples (meat n = 23; chard n = 23) were experimentally contaminated with strains O26:H11, O45:H-, O103:H2, O111:NM, O121:H19 and O145:NM isolated in Argentina. Strain detection was confirmed by isolation according to ISO 13136:2012. Detection of the stx and eae genes in meat samples was highly satisfactory with all commercial kits, but only five had 100% sensitivity and specificity in chard. Of four kits evaluated for serogroup detection, three had 100% sensitivity and specificity, and one had 93.7% sensitivity and 100% specificity. All kits were adequate to analyze meat but not vegetable samples, and were not therefore validated for the latter matrix. The challenge for microbiology laboratories is to identify the advantages and disadvantages of the available kits for STEC detection in food based on a clear knowledge of the particular needs of each laboratory.


Subject(s)
Food Contamination/analysis , Food Microbiology/methods , Meat/microbiology , Serotyping/standards , Shiga-Toxigenic Escherichia coli/isolation & purification , Vegetables/microbiology , Adhesins, Bacterial/genetics , Food Microbiology/standards , Reagent Kits, Diagnostic/standards , Sensitivity and Specificity , Serogroup , Serotyping/methods , Shiga Toxin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...