Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(3): e202215856, 2023 01 16.
Article in English | MEDLINE | ID: mdl-36399366

ABSTRACT

Photoexcitation of cyclic ketones leads to the expulsion of carbon monoxide and a mixture of products derived from diradical intermediates. Here we show that synthetic utility of this process is improved if strained heterocyclic ketones are used. Photochemistry of 3-oxetanone and N-Boc-3-azetidinone has not been previously described. Decarbonylation of these 4-membered rings proceeds through a step-wise Norrish type I cleavage of the C-C bond from the singlet excited state. Ylides derived from both compounds are high-energy species that are kinetically stable long enough to undergo [3+2] cycloaddition with a variety of alkenes and produce substituted tetrahydrofurans and pyrrolidines. The reaction has a sufficiently wide scope to produce scaffolds that were either previously inaccessible or difficult to synthesize, thereby providing experimental access to new chemical space.


Subject(s)
Azetidines , Ketones , Spectrum Analysis , Ketones/chemistry , Computer Simulation
2.
ACS Comb Sci ; 18(9): 569-74, 2016 09 12.
Article in English | MEDLINE | ID: mdl-27518324

ABSTRACT

Efficient syntheses of chiral fragments derived from chiral amino alcohols are described. Several unique scaffolds were readily accessed in 1-5 synthetic steps leading to 45 chiral fragments, including oxazolidinones, morpholinones, lactams, and sultams. These fragments have molecular weights ranging from 100 to 255 Da and are soluble in water (0.085 to >15 mM).


Subject(s)
Amino Alcohols/analysis , Amino Alcohols/chemistry , Drug Discovery , Humans , Lactams/chemistry , Molecular Weight , Morpholines/chemistry , Naphthalenesulfonates/chemistry , Oxazolidinones/chemistry , Stereoisomerism
3.
ACS Chem Biol ; 11(7): 1844-51, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27064299

ABSTRACT

Unbiased binding assays involving small-molecule microarrays were used to identify compounds that display unique patterns of selectivity among members of the zinc-dependent histone deacetylase family of enzymes. A novel, hydroxyquinoline-containing compound, BRD4354, was shown to preferentially inhibit activity of HDAC5 and HDAC9 in vitro. Inhibition of deacetylase activity appears to be time-dependent and reversible. Mechanistic studies suggest that the compound undergoes zinc-catalyzed decomposition to an ortho-quinone methide, which covalently modifies nucleophilic cysteines within the proteins. The covalent nature of the compound-enzyme interaction has been demonstrated in experiments with biotinylated probe compound and with electrospray ionization-mass spectrometry.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Animals , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...