Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Toxicol Pharmacol ; 98: 98-107, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30026135

ABSTRACT

Nonclinical safety testing of biopharmaceuticals can present significant challenges to human risk assessment with these innovative and often complex drugs. Emerging topics in this field were discussed recently at the 2016 Annual US BioSafe General Membership meeting. The presentations and subsequent discussions from the main sessions are summarized. The topics covered included: (i) specialty biologics (oncolytic virus, gene therapy, and gene editing-based technologies), (ii) the value of non-human primates (NHPs) for safety assessment, (iii) challenges in the safety assessment of immuno-oncology drugs (T cell-dependent bispecifics, checkpoint inhibitors, and costimulatory agonists), (iv) emerging therapeutic approaches and modalities focused on microbiome, oligonucleotide, messenger ribonucleic acid (mRNA) therapeutics, (v) first in human (FIH) dose selection and the minimum anticipated biological effect level (MABEL), (vi) an update on current regulatory guidelines, International Council for Harmonization (ICH) S1, S3a, S5, S9 and S11 and (vii) breakout sessions that focused on bioanalytical and PK/PD challenges with bispecific antibodies, cytokine release in nonclinical studies, determining adversity and NOAEL for biologics, the value of second species for toxicology assessment and what to do if there is no relevant toxicology species.


Subject(s)
Biological Products/toxicity , Drug Evaluation, Preclinical/methods , Animals , Antibodies, Monoclonal/toxicity , Cell- and Tissue-Based Therapy , Genetic Therapy , Humans , Recombinant Proteins/toxicity , Risk Assessment
2.
Toxicol Sci ; 137(2): 278-91, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24189134

ABSTRACT

Despite six decades of clinical experience with the polymyxin class of antibiotics, their dose-limiting nephrotoxicity remains difficult to predict due to a paucity of sensitive biomarkers. Here, we evaluate the performance of standard of care and next-generation biomarkers of renal injury in the detection and monitoring of polymyxin-induced acute kidney injury in male Han Wistar rats using colistin (polymyxin E) and a polymyxin B (PMB) derivative with reduced nephrotoxicity, PMB nonapeptide (PMBN). This study provides the first histopathological and biomarker analysis of PMBN, an important test of the hypothesis that fatty acid modifications and charge reductions in polymyxins can reduce their nephrotoxicity. The results indicate that alterations in a panel of urinary kidney injury biomarkers can be used to monitor histopathological injury, with Kim-1 and α-GST emerging as the most sensitive biomarkers outperforming clinical standards of care, serum or plasma creatinine and blood urea nitrogen. To enable the prediction of polymyxin-induced nephrotoxicity, an in vitro cytotoxicity assay was employed using human proximal tubule epithelial cells (HK-2). Cytotoxicity data in these HK-2 cells correlated with the renal toxicity detected via safety biomarker data and histopathological evaluation, suggesting that in vitro and in vivo methods can be incorporated within a screening cascade to prioritize polymyxin class analogs with more favorable renal toxicity profiles.


Subject(s)
Anti-Bacterial Agents/toxicity , Colistin/toxicity , Kidney Diseases/urine , Polymyxin B/analogs & derivatives , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Biomarkers/urine , Cell Line , Cell Survival/drug effects , Colistin/administration & dosage , Colistin/pharmacokinetics , Data Interpretation, Statistical , Dose-Response Relationship, Drug , Early Diagnosis , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Polymyxin B/administration & dosage , Polymyxin B/pharmacokinetics , Polymyxin B/toxicity , Prognosis , Rats , Rats, Wistar
3.
Toxicology ; 303: 133-8, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23159986

ABSTRACT

Alpha 2u-globulin mediated hyaline droplet nephropathy (HDN) is a male rat specific lesion induced when a compound or metabolite binds to alpha 2u-globulin. The objective of this study was to investigate if the newer and more sensitive renal biomarkers would be altered with HDN as well as be able to distinguish between HDN and oxidative stress-induced kidney injury. Rats were dosed orally for 7 days to determine (1) if HDN (induced by 2-propanol or D-limonene) altered the newer renal biomarkers and not BUN or creatinine, (2) if renal biomarkers could distinguish between HDN and oxidative stress-induced kidney injury (induced by potassium bromate), (3) sensitivity of HDN-induced renal biomarker changes relative to D-limonene dose, and (4) reversibility of HDN and renal biomarkers, using vehicle or 300 mg/kg/day D-limonene with 7 days of dosing and necropsies scheduled over the period of Days 8-85. HDN-induced renal biomarker changes in male rats were potentially compound specific: (1) 2-propanol induced mild HDN without increased renal biomarkers, (2) potassium bromate induced moderate HDN with increased clusterin, and (3) D-limonene induced marked HDN with increased αGST, µGST and albumin. Administration of potassium bromate did not result in oxidative stress-induced kidney injury, based on histopathology and renal biomarkers creatinine and BUN. The compound D-limonene induced a dose dependent increase in HDN severity and renal biomarker changes without altering BUN, creatinine or NAG: (1) minimal induction of HDN and no altered biomarkers at 10 mg/kg/day, (2) mild induction of HDN with increased αGST and µGST at 50 mg/kg/day and (3) marked induction of HDN with increased αGST, µGST and albumin at 300 mg/kg/day. HDN induced by D-limonene was reversible, but with a variable renal biomarker pattern over time: Day 8 there was increased αGST, µGST and albumin; on Day 15 increased clusterin, albumin and Kim-1. In summary, HDN altered the newer and more sensitive renal biomarkers in a time and possibly compound dependent manner.


Subject(s)
Alpha-Globulins/metabolism , Hyalin/metabolism , Kidney Diseases/pathology , Oxidative Stress , 1-Propanol/administration & dosage , 1-Propanol/toxicity , Animals , Biomarkers/metabolism , Blood Urea Nitrogen , Bromates/toxicity , Creatinine/metabolism , Cyclohexenes/administration & dosage , Cyclohexenes/toxicity , Dose-Response Relationship, Drug , Female , Kidney Diseases/diagnosis , Limonene , Male , Rats , Rats, Wistar , Severity of Illness Index , Terpenes/administration & dosage , Terpenes/toxicity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...