Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Braz J Biol ; 84: e281355, 2024.
Article in English | MEDLINE | ID: mdl-39046050

ABSTRACT

Gobionellus stomatus, a fish species endemic to Brazil, was previously known to occur from the State of Piauí to the State of Rio Grande do Sul. Here we present the first record of this species for the State of Maranhão, specifically for the Upaon-Açu island, extending its distribution further west, to the coastal zone of the Amazon region. This species inhabits estuarine ecosystems susceptible to environmental pressures, such as pollution and the introduction of non-native species. Despite G. stomatus being classified as of least concern for conservation, it is crucial to highlight potential risks associated with human activities in these environments, emphasizing the importance of preservation measures to mitigate future impacts on the populations of this species, as well as of other estuarine gobies.


Subject(s)
Animal Distribution , Brazil , Animals , Perciformes/classification , Conservation of Natural Resources
2.
Acta Physiol (Oxf) ; 220(2): 238-250, 2017 06.
Article in English | MEDLINE | ID: mdl-27770485

ABSTRACT

AIM: Thyroid hormones regulate metabolic response. While triiodothyronine (T3) is usually considered to be the active form of thyroid hormone, one form of diiodothyronine (3,5-T2) exerts T3-like effects on energy consumption and lipid metabolism. 3,5-T2 also improves glucose tolerance in rats and 3,5-T2 levels correlate with fasting glucose in humans. Presently, however, little is known about mechanisms of 3,5-T2 effects on glucose metabolism. Here, we set out to compare effects of T3, 3,5-T2 and another form of T2 (3,3-T2) in a mouse model of diet-induced obesity and determined effects of T3 and 3,5-T2 on markers of classical insulin sensitization to understand how diiodothyronines influence blood glucose. METHODS: Cell- and protein-based assays of thyroid hormone action. Assays of metabolic parameters in mice. Analysis of transcript and protein levels in different tissues by qRT-PCR and Western blot. RESULTS: T3 and 3,5-T2 both reduce body weight, adiposity and body temperature despite increased food intake. 3,3'-T2 lacks these effects. T3 and 3,5-T2 reduce blood glucose levels, whereas 3,3'-T2 worsens glucose tolerance. Neither T3 nor 3,5-T2 affects markers of insulin sensitization in skeletal muscle or white adipose tissue (WAT), but both reduce hepatic GLUT2 glucose transporter levels and glucose output. T3 and 3,5-T2 also induce expression of mitochondrial uncoupling proteins (UCPs) 3 and 1 in skeletal muscle and WAT respectively. CONCLUSIONS: 3,5-T2 influences glucose metabolism in a manner that is distinct from insulin sensitization and involves reductions in hepatic glucose output and changes in energy utilization.


Subject(s)
Blood Glucose/drug effects , Diiodothyronines/pharmacology , Insulin Resistance , Animals , Diet, High-Fat , Energy Metabolism/drug effects , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Obesity , Triiodothyronine/pharmacology
3.
Int J Obes (Lond) ; 40(11): 1776-1783, 2016 11.
Article in English | MEDLINE | ID: mdl-27460601

ABSTRACT

BACKGROUND/OBJECTIVES: Our objective was to assess the sustained, low-dose and constant administration of the thyroid receptor-ß (TRß)-selective agonist GC-1 (sobetirome) from a novel nanochannel membrane device (NMD) for drug delivery. As it known to speed up metabolism, accomplish weight loss, improve cholesterol levels and possess anti-diabetic effects, GC-1 was steadily administered by our NMD, consisting of an implantable nanochannel membrane, as an alternative to conventional daily administration, which is subject to compliance issues in clinical settings. SUBJECTS/METHODS: Diet-induced obese C57BL/J6 male mice were fed a very high-fat diet (VHFD) and received NMD implants subcutaneously. Ten mice per group received capsules containing GC-1 or phosphate-buffered saline (control). Weight, lean and fat mass, as well as cholesterol, triglycerides, insulin and glucose, were monitored for 24 days. After treatment, plasma levels of thyroid-stimulating hormone (TSH) and thyroxine were compared. mRNA levels of a panel of thermogenic markers were examined using real-time PCR in white adipose tissue (WAT) and brown adipose tissue (BAT). Adipose tissue, liver and local inflammatory response to the implant were examined histologically. Pancreatic islet number and ß-cell area were assessed. RESULTS: GC-1 released from the NMD reversed VHFD-induced obesity and normalized serum cholesterol and glycemia. Significant reductions in body weight and fat mass were observed within 10 days, whereas reductions in serum cholesterol and glucose levels were seen within 7 days. The significant decrease in TSH was consistent with TRß selectivity for GC-1. Levels of transcript for Ucp1 and thermogenic genes PGC1a, Cidea, Dio2 and Cox5a showed significant upregulation in WAT in NMD-GC-1-treated mice, but decreased in BAT. Although mice treated by NMD-GC-1 showed a similar number of pancreatic islets, they exhibited significant increase in ß-cell area. CONCLUSIONS: Our data demonstrate that the NMD implant achieves steady administration of GC-1, offering an effective and tightly controlled molecular delivery system for treatment of obesity and metabolic disease, thereby addressing compliance.


Subject(s)
Acetates/administration & dosage , Acetates/therapeutic use , Metabolic Syndrome/drug therapy , Phenols/administration & dosage , Phenols/therapeutic use , Thyroid Hormone Receptors beta/agonists , Acetates/pharmacology , Animals , Diet, High-Fat , Disease Models, Animal , Male , Metabolic Syndrome/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Molecular Targeted Therapy , Obesity/drug therapy , Obesity/metabolism , Phenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL