Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33806488

ABSTRACT

Wind energy resources are subject to changes in climate, so the use of wind energy density projections in the near future is essential to determine the viability and profitability of wind farms at particular locations. Thus, a step forward in determining the economic assessment of floating offshore wind farms was taken by considering current and near-future wind energy resources in assessing the main parameters that determine the economic viability (net present value, internal rate of return, and levelized cost of energy) of wind farms. This study was carried out along the Atlantic coast from Brest to Cape St. Vincent. Results show that the future reduction in wind energy density (2%-6%) mainly affects the net present value (NPV) of the farm and has little influence on the levelized cost of energy (LCOE). This study provides a good estimate of the economic viability of OWFs (Offshore Wind Farms) by taking into account how wind resources can vary due to climate change over the lifetime of the farm.


Subject(s)
Bays , Energy-Generating Resources , Farms , Feasibility Studies , Wind
2.
Article in English | MEDLINE | ID: mdl-31717702

ABSTRACT

The objective of this paper is to examine the economic aspects of a concrete offshore wind floating platform in the Atlantic Arc of Europe (Portugal and Spain). The life-cycle cost of a concrete floating offshore wind platform is considered to calculate the main economic parameters that will define the economic feasibility of the offshore wind farm. The case of study is the concrete floating offshore wind platform Telwind®, a spar platform with a revolutionary way of installing using a self-erecting telescopic tower of the wind turbine. In addition, the study analyses thirteen locations in Spain and twenty in Portugal, including the Atlantic islands of both countries. Results indicate that the economically feasible location to install a concrete offshore wind farm composed of concrete platforms is the Canary Islands (Spain) and Flores (Portugal).


Subject(s)
Electric Power Supplies/economics , Oceans and Seas , Wind , Animals , Europe , Portugal , Spain
3.
Article in English | MEDLINE | ID: mdl-31892261

ABSTRACT

The aim of this work is to develop a software to calculate the economic parameters so as to determine the feasibility of a floating offshore renewable farm in a selected location. The software can calculate the economic parameters of several types of offshore renewable energies, as follows: one renewable energy (floating offshore wind-WindFloat, tension leg platform (TLP), and spar; floating wave energy-Pelamis and AquaBuoy), hybrid offshore wind and wave systems (Wave Dragon and W2Power), and combined offshore wind and waves with different systems (independent arrays, peripherally distributed arrays, uniformly distributed arrays, and non-uniformly distributed arrays). The user can select several inputs, such as the location, configuration of the farm, type of floating offshore platform, type of power of the farm, life-cycle of the farm, electric tariff, capital cost, corporate tax, steel cost, percentage of financing, or interest and capacity of the shipyard. The case study is focused on the Galicia region (NW of Spain). The results indicate the economic feasibility of a farm of floating offshore renewable energy in a particular location in terms of its costs, levelized cost of energy (LCOE), internal rate of return (IRR), net present value (NPV), and discounted pay-back period. The tool allows for establishing conclusions about the dependence of the offshore wind resource parameters, the main distances (farm-shore, farm-shipyard, and farm-port), the parameters of the waves, and the bathymetry of the area selected.


Subject(s)
Renewable Energy , Software , Electricity , Spain , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...