Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Insects ; 14(7)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37504629

ABSTRACT

Onion maggot (Delia antiqua) is a prominent pest of allium crops in temperate zones worldwide. Management of this pest relies on prophylactic insecticide applications at planting that target the first generation. Because effective options are limited, growers are interested in novel tactics such as deployment of entomopathogenic nematodes. We surveyed muck soils where onions are typically grown to determine if entomopathogenic nematode species were present, and then evaluated the compatibility of entomopathogenic nematode species with the insecticides commonly used to manage D. antiqua. We also evaluated the efficacy of these entomopathogenic nematodes for reducing D. antiqua infestations in the field. No endemic entomopathogenic nematodes were detected in surveys of muck fields in New York. Compatibility assays indicated that, although insecticides such as spinosad and, to some extent, cyromazine did cause mortality of entomopathogenic nematodes, these insecticides did not affect infectivity of the entomopathogenic nematodes. Field trials indicated that applications of entomopathogenic nematodes can reduce the percentage of onion plants killed by D. antiqua from 6% to 30%. Entomopathogenic nematodes reduced D. antiqua damage and increased end of season yield over two field seasons. Applications of entomopathogenic nematodes may be a viable option for reducing D. antiqua populations in conventional and organic systems. Together with other management tactics, like insecticide seed treatments, applications of entomopathogenic nematodes can provide a yield boost and a commercially acceptable level of D. antiqua control.

2.
Biosens Bioelectron ; 221: 114417, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-35690558

ABSTRACT

Understanding the diversity of soil organisms is complicated by both scale and substrate. Every footprint we leave in the soil covers hundreds to millions of organisms yet we cannot see them without extremely laborious extraction and microsopy endeavors. Studying them is also challenging. Keeping them alive so that we can understand their lifecycles and ecological roles ranges from difficult to impossible. Functional and taxonomic identification of soil organisms, while possible, is also challenging. Here we present the Smart Soil Organism Detector, an instrument and machine learning pipeline that combines high-resolution imaging, multi-spectral sensing, large-bore flow cytometry, and machine learning to extract, isolate, count, identify, and separate soil organisms in a high-throughput, high-resolution, non-destructive, and reproducible manner. This system is not only capable of separating alive nematodes, dead nematodes, and nematode cuticles from soil with 100% out-of-sample accuracy, but also capable of identifying nematode strains (sub-species) with 95.5% out-of-sample accuracy and 99.4% specificity. Soil micro-arthropods were identified to class with 96.1% out-of-sample accuracy. Broadly applicable across soil taxa, the Smart SOD system is a tool for understanding global soil biodiversity.


Subject(s)
Biosensing Techniques , Nematoda , Animals , Soil , Biodiversity , Machine Learning
3.
Insects ; 13(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36555007

ABSTRACT

The lesser chestnut weevil, Curculio sayi (Gyllenhal), can cause irreparable damage to chestnuts through direct consumption and/or introduction of secondary pathogens. With the resurgence of blight resistant American Chestnut plantings both for commercial production and for habitat restoration, C. sayi has become a similarly resurgence pest. Here, we investigated the nature and extent of C. sayi larval damage on individual nuts and collected harvests with an eye toward the quantifying impacts. Next, we explored management options using biological control including entomopathogenic fungi and entomopathogenic nematodes. Nut damage from C. sayi can be extensive with individual nuts hosting several larvae, larvae emerging from nuts several weeks post harvest, and nut weight loss even after C. sayi have emerged from the nut. Applications of entomopathogenic fungi reduced chances of chestnut infestation, while certain strains of entomopathogenic nematodes increased the probability of C. sayi larval mortality. Understanding C. sayi damage and exploring biological control management options could be a useful tool in the effective management of this resurgent pest.

4.
Insects ; 13(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-36005338

ABSTRACT

With the introduction in recent years of high-yield blight-resistant chestnut varieties, the commercial chestnut industry in the United States is expanding. Accompanying this expansion is a resurgence in a primary pest of chestnut: C. sayi, the lesser chestnut weevil. This weevil damages the nut crop and infestations can surge from 0 to close to 100% in as little as two years. Understanding the dynamics of this pest has been challenging. Most work was conducted in the 1900s and only recently has this weevil garnered renewed interest. Recent work on C. sayi phenology has been completed in Missouri but conflicted with anecdotal reports from northern growers. From 2019 to 2020, we used a combination of trapping and microcosm studies to understand both C. sayi phenology and the means of monitoring this pest. C. sayi populations were univoltine and peaked in mid-October. Pyramid traps were the most effective at capturing adult C. sayi. C. sayi larvae, pupae, eclosed adults, and emerging adults were recovered from microcosm experiments. These results suggest that C. sayi emerges later in the northern US with the potential for a single generation to emerge over multiple subsequent years. Understanding C. sayi phenology along with the means of monitoring forms the basis for effective management and control in commercial chestnut orchards.

5.
J Econ Entomol ; 114(5): 2162-2171, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34378779

ABSTRACT

The ambrosia beetle Xylosandrus germanus (Blandford) is an invasive pest that has caused tree decline and death in numerous NY dwarf apple orchards during the past ten years, despite efforts to control them using trunk sprays of chlorpyrifos or pyrethroids, either alone or combined with the repellent verbenone. From 2017 to 2019, we tested trunk applications of different repellents and plant defense compounds for protection against X. germanus in potted apple trees adjacent to infested orchards. Treatments included topical formulations of verbenone and methyl salicylate (MeSa), alone and in combination, at different rates and timings. Additional treatments evaluated included the systemic acquired resistance activators acibenzolar-S-methyl, Reynoutria sachalinensis extract, and salicylic acid. The combination verbenone+MeSa treatments had the lowest incidences of attack sites and galleries containing adults or brood, although results varied among years. In a separate trial, we found no significant difference in numbers of adults caught in ethanol-baited traps placed 5-20 m from an apple bolt treated with the verbenone+MeSa repellent, suggesting that the repellent's effect did not extend to those distances from the treated target. Cross-sectional discs of trunk tissue sampled in August were analyzed for levels of phytohormones. Quantities of ergosterol, abscissic acid, salicylic acid, jasmonic acid, methyl salicylate, methyl jasmonate, trans-cinnamic acid, and indole-3-cinnamic acid did not significantly vary across treatments; however, trees with greater beetle damage contained higher levels of jasmonic and salicylic acid, which are key molecules in plant defense pathways.


Subject(s)
Coleoptera , Malus , Weevils , Animals , Cross-Sectional Studies , Insect Control , Trees
6.
Sci Rep ; 11(1): 17090, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429457

ABSTRACT

Entomopathogenic nematodes are typically considered lethal parasites of insect hosts. Indeed they are employed as such for biological control of insect pests. The effects of exposure to entomopathogenic nematodes are not strictly limited to mortality, however. Here we explore non-lethal effects of exposure to entomopathogenic nematodes by introducing the relatively non-susceptible pupal stage of Delia antiqua to thirteen different strains. We specifically chose to inoculate the pupal stage because it tends to be more resistant to infection, yet resides in the soil where it could come into contact with EPN biological control agents. We find that there is no significant mortality at the pupal stage, but that there are a host of strain-dependent non-lethal effects during and after the transition to adulthood including altered developmental times and changes in risk of death compared to controls. We also find that exposure to specific strains can reduce risk of mortality. These results emphasize the strain-dependent nature of entomopathogenic nematode infection and highlight the positive and negative ramifications for non-lethal effects for biological control of insect pests. Our work emphasizes the need for strain-specific screening of biological control agents before wide-spread adoption.


Subject(s)
Diptera/parasitology , Nematoda/pathogenicity , Pest Control, Biological/methods , Animals , Diptera/growth & development , Host-Parasite Interactions , Nematoda/classification , Pupa/parasitology
7.
PLoS One ; 15(9): e0237975, 2020.
Article in English | MEDLINE | ID: mdl-32960892

ABSTRACT

The swift rise of omics-approaches allows for investigating microbial diversity and plant-microbe interactions across diverse ecological communities and spatio-temporal scales. The environment, however, is rapidly changing. The introduction of invasive species and the effects of climate change have particular impact on emerging plant diseases and managing current epidemics. It is critical, therefore, to take a holistic approach to understand how and why pathogenesis occurs in order to effectively manage for diseases given the synergies of changing environmental conditions. A multi-omics approach allows for a detailed picture of plant-microbial interactions and can ultimately allow us to build predictive models for how microbes and plants will respond to stress under environmental change. This article is designed as a primer for those interested in integrating -omic approaches into their plant disease research. We review -omics technologies salient to pathology including metabolomics, genomics, metagenomics, volatilomics, and spectranomics, and present cases where multi-omics have been successfully used for plant disease ecology. We then discuss additional limitations and pitfalls to be wary of prior to conducting an integrated research project as well as provide information about promising future directions.


Subject(s)
Ecology , Genomics/methods , Metabolomics/methods , Metagenomics/methods , Plant Diseases/etiology , Plants/immunology , Proteomics/methods , Microbiota , Plants/metabolism , Systems Biology
8.
Pest Manag Sci ; 76(8): 2720-2725, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32170784

ABSTRACT

BACKGROUND: Onion maggot (Delia antiqua) is a pest of onions worldwide. Current means of managing this pest rely heavily on prophylatic insecticide treatments at planting. These options may not be viable in organic production systems or situations where insecticide-resistant populations occur. Here we explore the efficacy of an attract and kill strategy for control of D. antiqua evaluating the ability of attractive, spinosad containing spheres to kill adult D. antiqua and reduce crop losses. RESULTS: Spinosad containing spheres were able to consistently kill D. antiqua adults over the course of the field season (mortality range: between 49% and 59% on average). Pairing spinosad spheres with Delia Lure increased efficacy by 72% compared with the spheres alone. Performance of this attract and kill strategy also can reduce damage by D. antiqua larvae in the field, but it did not achieve a level of control comparable to the level provided by a conventional insecticide treatment. CONCLUSION: Implementation of this attract and kill strategy could be a valuable tool in situations where conventional pesticides are either not available or desired, where additional control techniques are needed, or to provide a season-long option for control of D. antiqua populations. © 2020 Society of Chemical Industry.


Subject(s)
Macrolides/pharmacology , Animals , Diptera , Drug Combinations , Insect Control , Insecticides , Larva , Onions
9.
Sci Rep ; 10(1): 2212, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32042018

ABSTRACT

Plant-parasitic nematodes are devastating pathogens of many important agricultural crops. They have been successful in large part due to their ability to modify host plant metabolomes to their benefit. Both root-knot and cyst nematodes are endoparasites that have co-evolved to modify host plants to create sophisticated feeding cells and suppress plant defenses. In contrast, the ability of migratory ectoparasitic nematodes to modify host plants is unknown. Based on global metabolomic profiling of sting nematodes in African bermudagrass, ectoparasites can modify the global metabolome of host plants. Specifically, sting nematodes suppress amino acids in susceptible cultivars. Upregulation of compounds linked to plant defense have negative impacts on sting nematode population densities. Pipecolic acid, linked to systemic acquired resistance induction, seems to play a large role in protecting tolerant cultivars from sting nematode feeding and could be targeted in breeding programs.


Subject(s)
Cynodon/parasitology , Metabolome/immunology , Pipecolic Acids/metabolism , Plant Diseases/immunology , Tylenchoidea/pathogenicity , Animals , Cynodon/immunology , Cynodon/metabolism , Disease Resistance , Host-Parasite Interactions , Metabolomics , Pipecolic Acids/immunology , Plant Breeding , Plant Diseases/parasitology , Plant Diseases/prevention & control , Tylenchoidea/immunology , Tylenchoidea/metabolism
10.
Int J Mol Sci ; 20(23)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766518

ABSTRACT

The salicylic acid pathway is one of the primary plant defense pathways, is ubiquitous in vascular plants, and plays a role in rapid adaptions to dynamic abiotic and biotic stress. Its prominence and ubiquity make it uniquely suited for understanding how biochemistry within plants can mediate ecological consequences. Induction of the salicylic acid pathway has primary effects on the plant in which it is induced resulting in genetic, metabolomic, and physiologic changes as the plant adapts to challenges. These primary effects can in turn have secondary consequences for herbivores and pathogens attacking the plant. These secondary effects can both directly influence plant attackers and mediate indirect interactions between herbivores and pathogens. Additionally, stimulation of salicylic acid related defenses can affect natural enemies, predators and parasitoids, which can recruit to plant signals with consequences for herbivore populations and plant herbivory aboveground and belowground. These primary, secondary, and tertiary ecological consequences of salicylic acid signaling hold great promise for application in agricultural systems in developing sustainable high-yielding management practices that adapt to changing abiotic and biotic environments.


Subject(s)
Ecosystem , Herbivory/physiology , Plant Roots/metabolism , Plants/metabolism , Salicylic Acid/metabolism , Signal Transduction , Agriculture/methods , Animals , Ecology/methods , Larva/physiology , Plant Roots/parasitology , Plants/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...