Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(2): e31205, 2012.
Article in English | MEDLINE | ID: mdl-22348056

ABSTRACT

Macrophages are key elements in the inflammatory process, whereas depending on the micro-environmental stimulation they exhibit a pro-inflammatory (classical/M1) or an anti-inflammatory/reparatory (alternative/M2) phenotype. Extracellular ATP can act as a danger signal whereas adenosine generally serves as a negative feedback mechanism to limit inflammation. The local increase in nucleotides communication is controlled by ectonucleotidases, such as members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family and ecto-5'-nucleotidase/CD73 (ecto-5'-NT). In the present work we evaluated the presence of these enzymes in resident mice M1 (macrophages stimulated with LPS), and M2 (macrophages stimulated with IL-4) macrophages. Macrophages were collected by a lavage of the mice (6-8 weeks) peritoneal cavity and treated for 24 h with IL-4 (10 ng/mL) or LPS (10 ng/mL). Nitrite concentrations were measured using the Greiss reaction. Supernatants were harvested to determine cytokines and the ATPase, ADPase and AMPase activities were determined by the malachite green method and HPLC analysis. The expression of selected surface proteins was evaluated by flow cytometry. The results reveal that M1 macrophages presented a decreased ATP and AMP hydrolysis in agreement with a decrease in NTPDase1, -3 and ecto-5'-nucleotidase expression compared to M2. In contrast, M2 macrophages showed a higher ATP and AMP hydrolysis and increased NTPDase1, -3 and ecto-5'-nucleotidase expression compared to M1 macrophages. Therefore, macrophages of the M1 phenotype lead to an accumulation of ATP while macrophages of the M2 phenotype may rapidly convert ATP to adenosine. The results also showed that P1 and P2 purinoreceptors present the same mRNA profile in both phenotypes. In addition, M2 macrophages, which have a higher ATPase activity, were less sensitive to cell death. In conclusion, these changes in ectoenzyme activities might allow macrophages to adjust the outcome of the extracellular purinergic cascade in order to fine-tune their functions during the inflammatory set.


Subject(s)
5'-Nucleotidase/analysis , Gene Expression Profiling , Macrophage Activation/genetics , Pyrophosphatases/analysis , 5'-Nucleotidase/genetics , Adenosine/biosynthesis , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Animals , Mice , Pyrophosphatases/genetics , RNA, Messenger/analysis , Receptors, Purinergic P1/genetics , Receptors, Purinergic P2/genetics
2.
Mol Cell Biochem ; 301(1-2): 33-45, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17203241

ABSTRACT

In early reports our research group has demonstrated that 7 microM retinol (vitamin A) treatment leads to many changes in Sertoli cell metabolism, such as up-regulation of antioxidant enzyme activities, increase in damage to biomolecules, abnormal cellular division, pre-neoplasic transformation, and cytoskeleton conformational changes. These effects were observed to be dependent on the production of reactive oxygen species (ROS), suggesting extra-nuclear (non-genomic) effects of retinol metabolism. Besides 7 microM retinol treatment causing oxidative stress, we have demonstrated that changes observed in cytoskeleton of Sertoli cells under these conditions were protective, and seem to be an adaptive phenomenon against a pro-oxidant environment resulting from retinol treatment. We have hypothesized that the cytoskeleton can conduct electrons through actin microfilaments, which would be a natural process necessary for cell homeostasis. In the present study we demonstrate results correlating retinol metabolism, actin architecture, mitochondria physiology and ROS, in order to demonstrate that the electron conduction through actin microfilaments might explain our results. We believe that electrons produced by retinol metabolism are dislocated through actin microfilaments to mitochondria, and are transferred to electron transport chain to produce water. When mitochondria capacity to receive electrons is overloaded, superoxide radical production is increased and the oxidative stress process starts. Our results suggested that actin cytoskeleton is essential to oxidative stress production induced by retinol treatment, and electrons conduction through actin microfilaments can be the key of this correlation.


Subject(s)
Actins/metabolism , Electrons , Oxidative Stress , Sertoli Cells , Vitamin A/pharmacology , Actins/ultrastructure , Animals , Cytochalasin B/metabolism , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Male , Membrane Potentials/physiology , Mitochondria/metabolism , Phosphorylation , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Sertoli Cells/cytology , Sertoli Cells/drug effects , Sertoli Cells/metabolism , Vitamins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...