Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Dis ; : PDIS06231154RE, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-37775922

ABSTRACT

A mandatory tomato-free period (TFP) was implemented in the state of Goiás, Brazil, in 2007 to help manage diseases caused by whitefly-transmitted begomoviruses. The impact of the TFP was examined in five locations across three states in Central Brazil from 2013 to 2016. Surveys revealed significant differences in begomovirus disease incidence among locations, i.e., low in Guaíra-TFP and Patos de Minas-TFP; moderate-high in Itaberaí-TFP and Morrinhos-TFP; and high in the non-TFP (NTFP) control, Cristalina-NTFP. PCR tests and DNA sequencing were used to validate the symptoms and showed that all collected symptomatic plant samples were infected with tomato severe rugose virus (ToSRV), a common indigenous bipartite begomovirus. Early season surveys (20 to 40 days after transplants [DAT]) in Itaberaí-TFP and Morrinhos-TFP revealed significantly less begomovirus disease in fields established sooner after the TFP (0 to 2 months) compared with incidences in (i) equivalent early planted fields in the Cristalina-NTFP control and (ii) fields established longer after the end of the TFP (>2 to 5 months). Whitefly infestation of crops was detected year-round in all locations and years, and all tested adults were classified in the Bemisia tabaci MEAM1 cryptic species. Infestation levels were significantly higher during the summer but did not vary significantly among locations. Results of monthly monitoring of adult whiteflies for general begomovirus and ToSRV were positively correlated and were indicators of disease incidence in the field. Notably, ToSRV was not detected in whiteflies collected from nontomato plants during the TFP, and there was a longer lag period before detection in whiteflies collected from processing tomatoes for Itaberaí-TFP and Morrinhos-TFP compared with Cristalina-NTFP. Taken together with the low levels of ToSRV infection detected in potential nontomato reservoir hosts at all locations, our results revealed low levels of primary inoculum during the TFP. Thus, even in a complex agroecosystem with year-round whitefly infestation of crops, the TFP was beneficial due to delayed and reduced begomovirus disease pressure during a critical stage of plant development (first month) and for favoring low levels of primary inoculum. Thus, we concluded that the TFP should be part of a regional integrated pest management (IPM) program targeting ToSRV in Brazil.

2.
Phytopathology ; 112(1): 180-188, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34410854

ABSTRACT

In Brazil, citrus huanglongbing (HLB) is associated with 'Candidatus Liberibacter americanus' (CLam) and 'Ca. Liberibacter asiaticus' (CLas). However, there are few studies about HLB epidemiology when both Liberibacter spp. and its insect vector, the Asian citrus psyllid (ACP, Diaphorina citri), are present. The objective of this work was to compare the transmission of HLB by ACP when both CLam and CLas are present as primary inoculum. Two experiments were performed under screenhouse conditions from April 2008 to January 2012 (experiment 1) and from February 2011 to December 2015 (experiment 2). The experiments were carried out with sweet orange plants infected with CLam or CLas as inoculum source surrounded by sweet orange healthy plants. One hundred Liberibacter-free adult psyllids were monthly confined to the source of inoculum plants for 7 days with subsequent free movement inside the screenhouse. Fortnightly, nymphs and adults of psyllids were monitored. Psyllid and leaf samples were collected periodically for Liberibacter detection by PCR or quantitative PCR. CLas was detected more frequently than CLam in both psyllid and leaf samples. No mixed infections were detected in the psyllids. A clear prevalence of CLas over CLam was observed in both experiments. The final HLB incidences were 16.7 and 14.5% of Liberibacter-positive test plants, and CLas was detected in 92.3 and 93.1% of these infected plants. Mixed infection was observed only in 3.8% of infected test plants in experiment 1. These results endorse the shift in the prevalence of CLam to CLas observed in citrus orchards of São Paulo, Brazil.


Subject(s)
Citrus , Hemiptera , Rhizobiaceae , Animals , Brazil , Environment, Controlled , Liberibacter , Plant Diseases
3.
Plant Dis ; 105(9): 2472-2483, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33507102

ABSTRACT

Huanglongbing (HLB) incidence is increasing and threatening citrus production in São Paulo State, Brazil, despite multiple efforts to control the disease and its vector, the Asian citrus psyllid (ACP) (Diaphorina citri). The objective of this research was to study the temporal dynamics of HLB epidemics, under intensive disease management, in 177 individual commercial citrus blocks on a single property in São Paulo State. The effect of internal and external sources of HLB-associated bacteria and its vector were explored based on the disease epidemics and vector dynamics in the studied area. To manage HLB, the property owner used healthy nursery plants, eradicated symptomatic trees, and used insecticides to control ACPs. Logistic and Gompertz models were fitted to the data to describe dynamics of HLB incidence for all blocks. The average number of ACPs per yellow sticky trap was determined for the same blocks for a period of four consecutive years. Both logistic and Gompertz models described the HLB epidemics well, although the Gompertz model provided a slightly better fit. Disease progress rates, HLB incidences, and average ACP count per trap in the 177 blocks were low compared with reports in the literature. HLB incidence and number of ACPs per trap were higher (P ≤ 0.05) in some citrus blocks located on the periphery of the property. A large number of noncommercial trees were found near the property and were a potential primary inoculum source of HLB-associated bacteria, accounting for the higher incidence of HLB and ACPs per trap in blocks located on the periphery of the property. These results support the recommended preventive measures to HLB management and the necessity of external actions, to include trees in commercial orchards, and noncommercial trees located near commercial citrus properties, in an attempt to maximize the effectiveness of these preventive measures.


Subject(s)
Citrus , Epidemics , Hemiptera , Animals , Brazil , Plant Diseases
4.
Plant Dis ; 105(8): 2097-2105, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33373290

ABSTRACT

The management of citrus canker, caused by Xanthomonas citri subsp. citri, has been widely studied in endemic areas because of the importance of the disease in several citrus-producing countries. A set of control measures is well established, but no study has investigated the efficiency of each measure individually and their combination for disease suppression. This study comprised a 3-year field study to assess the relative contribution of three measures for the control of citrus canker and reduction of crop losses. Windbreak (Wb), copper sprays (Cu), and leafminer control (Lc) were assessed in eight different combinations in a split-split plot design. The orchard was composed of 'Valencia' sweet orange trees grafted onto 'Rangpur' lime. Casuarina cunninghamiana trees were used as Wb. Cu and Lc sprays were performed every 21 days throughout the year. Individually, Cu showed the highest contribution for canker control, followed by Wb. Lc had no effect on reducing citrus canker. Wb+Cu showed the highest efficiency for control of the disease. This combination reduced the incidence of diseased trees by approximately 60%, and the incidence of diseased leaves and fruit by ≥90% and increased the yield in 2.0- to 2.6-fold in comparison with the unmanaged plots. Cu sprays were important for reducing disease incidence and crop losses, whereas Wb had an additional contribution in minimizing the incidence of cankered, non-marketable fruit. The results indicated that the adoption of these measures of control may depend on the characteristics of the orchard and destination of the production.


Subject(s)
Citrus sinensis , Citrus , Copper , Plant Diseases/prevention & control , Plant Leaves
5.
Plant Dis ; 97(6): 789-796, 2013 Jun.
Article in English | MEDLINE | ID: mdl-30722592

ABSTRACT

Huanglongbing (HLB), caused by 'Candidatus Liberibacter' spp. and transmitted by the Asian citrus psyllid Diaphorina citri (ACP), is an important threat to citrus industries worldwide, causing significant yield loss. The current recommended strategies to manage HLB are to eliminate HLB-symptomatic trees to reduce sources of bacterial inoculum and to apply insecticides to reduce psyllid vector populations. The objective of this study was to assess the effectiveness and the importance of both strategies applied within young citrus plots (local management), in different frequencies and combinations, on HLB temporal progress. Two factorial field experiments, E1 and E2, were initiated in a new plantation of sweet orange in an HLB epidemic region of Sao Paulo, Brazil, in October 2005 and May 2006, respectively. Local inoculum reduction (tree removal) intervals for E1 were every 4, 8, and 16 weeks and, for E2, every 2, 4, 12, and 26 weeks. Local vector control strategies for E1 were no control, program A (PA), and program B (PB); and, for E2, no control and program C (PC), as follows. Psyllids were controlled with two 56-day-interval soil or drench applications of systemic insecticides concurrently with the rainy season each year and, during the rest of the year, with insecticide sprays every 28 days for PA and every 14 days for PB and PC. Regional HLB management was present for E1 and absent for E2. The beginning of the HLB epidemic was delayed for 10 months in E1 compared with appearance of the first diseased tree in E2 but wasn't affected by different local strategies in either experiment. After 60 (E1) and 53 (E2) months, the HLB incidence and progress rates were not affected by different frequencies of local inoculum reduction in either experiment, and were different only in plots with and without local vector control in E2. In E1, the disease incidence was reduced by 90% and the disease progress rate by 50% in plots both with and without vector control. These reductions were explained by smaller psyllid populations and lower frequency of bacterialiferous psyllids in E1 compared with E2. Annual productivity increased over time in E1, as expected for young plantings, but remained stable or decreased in E2. These results confirm that immigration of bacterialiferous ACP vectors plays a critical role in HLB epidemics and suggest that area-wide inoculum reduction and ACP management strongly affect HLB control.

SELECTION OF CITATIONS
SEARCH DETAIL
...