Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuron ; 110(20): 3374-3388.e8, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36041433

ABSTRACT

Individual memories are often linked so that the recall of one triggers the recall of another. For example, contextual memories acquired close in time can be linked, and this is known to depend on a temporary increase in excitability that drives the overlap between dorsal CA1 (dCA1) hippocampal ensembles that encode the linked memories. Here, we show that locus coeruleus (LC) cells projecting to dCA1 have a key permissive role in contextual memory linking, without affecting contextual memory formation, and that this effect is mediated by dopamine. Additionally, we found that LC-to-dCA1-projecting neurons modulate the excitability of dCA1 neurons and the extent of overlap between dCA1 memory ensembles as well as the stability of coactivity patterns within these ensembles. This discovery of a neuromodulatory system that specifically affects memory linking without affecting memory formation reveals a fundamental separation between the brain mechanisms modulating these two distinct processes.


Subject(s)
Dopamine , Locus Coeruleus , Locus Coeruleus/physiology , Dopamine/physiology , Memory/physiology , Hippocampus/physiology , Neurons/physiology
2.
Nature ; 606(7912): 146-152, 2022 06.
Article in English | MEDLINE | ID: mdl-35614219

ABSTRACT

Real-world memories are formed in a particular context and are often not acquired or recalled in isolation1-5. Time is a key variable in the organization of memories, as events that are experienced close in time are more likely to be meaningfully associated, whereas those that are experienced with a longer interval are not1-4. How the brain segregates events that are temporally distinct is unclear. Here we show that a delayed (12-24 h) increase in the expression of C-C chemokine receptor type 5 (CCR5)-an immune receptor that is well known as a co-receptor for HIV infection6,7-after the formation of a contextual memory determines the duration of the temporal window for associating or linking that memory with subsequent memories. This delayed expression of CCR5 in mouse dorsal CA1 neurons results in a decrease in neuronal excitability, which in turn negatively regulates neuronal memory allocation, thus reducing the overlap between dorsal CA1 memory ensembles. Lowering this overlap affects the ability of one memory to trigger the recall of the other, and therefore closes the temporal window for memory linking. Our findings also show that an age-related increase in the neuronal expression of CCR5 and its ligand CCL5 leads to impairments in memory linking in aged mice, which could be reversed with a Ccr5 knockout and a drug approved by the US Food and Drug Administration (FDA) that inhibits this receptor, a result with clinical implications. Altogether, the findings reported here provide insights into the molecular and cellular mechanisms that shape the temporal window for memory linking.


Subject(s)
CA1 Region, Hippocampal , Memory , Neurons , Receptors, CCR5 , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Memory/physiology , Mental Recall/physiology , Mice , Neurons/metabolism , Receptors, CCR5/deficiency , Receptors, CCR5/genetics , Receptors, CCR5/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...