Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(7): e0235642, 2020.
Article in English | MEDLINE | ID: mdl-32640001

ABSTRACT

Aspergillus tamarii grows abundantly in naturally composting waste fibers of the textile industry and has a great potential in biomass decomposition. Amongst the key (hemi)cellulose-active enzymes in the secretomes of biomass-degrading fungi are the lytic polysaccharide monooxygenases (LPMOs). By catalyzing oxidative cleavage of glycoside bonds, LPMOs promote the activity of other lignocellulose-degrading enzymes. Here, we analyzed the catalytic potential of two of the seven AA9-type LPMOs that were detected in recently published transcriptome data for A. tamarii, namely AtAA9A and AtAA9B. Analysis of products generated from cellulose revealed that AtAA9A is a C4-oxidizing enzyme, whereas AtAA9B yielded a mixture of C1- and C4-oxidized products. AtAA9A was also active on cellopentaose and cellohexaose. Both enzymes also cleaved the ß-(1→4)-glucan backbone of tamarind xyloglucan, but with different cleavage patterns. AtAA9A cleaved the xyloglucan backbone only next to unsubstituted glucosyl units, whereas AtAA9B yielded product profiles indicating that it can cleave the xyloglucan backbone irrespective of substitutions. Building on these new results and on the expanding catalog of xyloglucan- and oligosaccharide-active AA9 LPMOs, we discuss possible structural properties that could underlie the observed functional differences. The results corroborate evidence that filamentous fungi have evolved AA9 LPMOs with distinct substrate specificities and regioselectivities, which likely have complementary functions during biomass degradation.


Subject(s)
Aspergillus/metabolism , Fungal Proteins/metabolism , Glucans/metabolism , Mixed Function Oxygenases/metabolism , Xylans/metabolism , Amino Acid Sequence , Binding Sites , Chromatography, High Pressure Liquid , Cloning, Molecular , Copper/chemistry , Copper/metabolism , Fungal Proteins/classification , Fungal Proteins/genetics , Glucans/analysis , Glucans/chemistry , Mixed Function Oxygenases/classification , Mixed Function Oxygenases/genetics , Oxidation-Reduction , Phylogeny , Polysaccharides , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Substrate Specificity , Xylans/chemistry
2.
Trends Biochem Sci ; 41(7): 633-645, 2016 07.
Article in English | MEDLINE | ID: mdl-27211037

ABSTRACT

Lignocellulose, the most abundant renewable carbon source on earth, is the logical candidate to replace fossil carbon as the major biofuel raw material. Nevertheless, the technologies needed to convert lignocellulose into soluble products that can then be utilized by the chemical or fuel industries face several challenges. Enzymatic hydrolysis is of major importance, and we review the progress made in fungal enzyme technology over the past few years with major emphasis on (i) the enzymes needed for the conversion of polysaccharides (cellulose and hemicellulose) into soluble products, (ii) the potential uses of lignin degradation products, and (iii) current progress and bottlenecks for the use of the soluble lignocellulose derivatives in emerging biorefineries.


Subject(s)
Biofuels , Biomass , Enzymes/metabolism , Fungi/enzymology , Lignin/metabolism , Hydrolysis , Lignin/chemistry
3.
Biotechnol Appl Biochem ; 62(6): 806-14, 2015.
Article in English | MEDLINE | ID: mdl-25546578

ABSTRACT

The partitioning of protease expressed by Penicillium fellutanum from the Brazilian savanna in a novel inexpensive and stable aqueous two-phase system (ATPS) composed of poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied in this work using factorial design. The ATPS is formed by mixing both polymers with a salt (NaCl) and fermented broth of P. fellutanum. The effects of molar mass (2,000, 4,000, and 6,000 g ⋅ mol(-1)) and concentration (6, 8, and 10 wt%) of PEG and that of NaPA concentration (6, 8, and 10 wt%) on protease partitioning (K) at 25 °C were studied. A two-level factorial design (2(3)) was implemented. The effect of Na2 SO4 concentration (5, 10, and 15 wt%) on the reextraction of the enzyme was also analyzed. The partition coefficient K ranged from 77.51 to 1.21, indicating the versatility of the method. The reextraction was achieved with the addition of 5% Na2 SO4 , allowing the partitioning of the protease to the upper phase, whereas total proteins were directed to the bottom phase. The results of partitioning using the PEG/NaPA/NaCl system and that of the subsequent reextraction with Na2 SO4 suggest that this method can be used to purify proteases from fermented broth of P. fellutanum.


Subject(s)
Acrylic Resins/chemistry , Chemical Fractionation/methods , Grassland , Penicillium/genetics , Peptide Hydrolases/isolation & purification , Polyethylene Glycols/chemistry , Sodium Chloride/chemistry , Gene Expression , Peptide Hydrolases/genetics , Water/chemistry
4.
BMC Biotechnol ; 11: 14, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21299880

ABSTRACT

BACKGROUND: Asian rust (Phakopsora pachyrhizi) is a common disease in Brazilian soybean fields and it is difficult to control. To identify a biochemical candidate with potential to combat this disease, a new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP) leaves was cloned into the pGAPZα-B vector for expression in Pichia pastoris. RESULTS: A cDNA encoding a chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) (CaclXIP), was isolated from leaves. The amino acid sequence predicts a (ß/α)8 topology common to Class III Chitinases (glycoside hydrolase family 18 proteins; GH18), and shares similarity with other GH18 members, although it lacks the glutamic acid residue essential for catalysis, which is replaced by glutamine. CaclXIP was expressed as a recombinant protein in Pichia pastoris. Enzymatic assay showed that purified recombinant CaclXIP had only residual chitinolytic activity. However, it inhibited xylanases from Acrophialophora nainiana by approx. 60% when present at 12:1 (w/w) enzyme:inhibitor ratio. Additionally, CaclXIP at 1.5 µg/µL inhibited the germination of spores of Phakopsora pachyrhizi by 45%. CONCLUSIONS: Our data suggests that CaclXIP belongs to a class of naturally inactive chitinases that have evolved to act in plant cell defence as xylanase inhibitors. Its role on inhibiting germination of fungal spores makes it an eligible candidate gene for the control of Asian rust.


Subject(s)
Basidiomycota/drug effects , Chitinases/pharmacology , Coffee/enzymology , Xylosidases/antagonists & inhibitors , Amino Acid Sequence , Basidiomycota/physiology , Chitinases/chemistry , Chitinases/genetics , Chitinases/metabolism , Cloning, Molecular , Coffee/genetics , Electrophoresis, Polyacrylamide Gel , Germination/drug effects , Molecular Sequence Annotation , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/pharmacology , Sequence Alignment , Glycine max/microbiology , Spores, Fungal/drug effects
5.
Biotechnol Lett ; 29(8): 1195-201, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17487548

ABSTRACT

Two novel genes, xyn5 and xyn6, coding for family 11 xylanases, were isolated from the thermotolerant filamentous fungus, Acrophialophora nainiana, by PCR using degenerate primers. The xyn6 gene was further expressed in Trichoderma reesei. DNA sequence analysis of xyn6 revealed an open reading frame (ORF) of 708 bp, interrupted by an intron of 58 bp. The xyn6 ORF encodes a predicted protein of 236 amino acid residues. The mature recombinant XynVI protein had a molecular mass of about 19 kDa, as estimated by gel electrophoresis. Analysis of the predicted amino acid sequence of XynVI paves the way for rational protein engineering by site-directed mutagenesis aiming to increase the thermostability of the heterologously-expressed xylanase.


Subject(s)
Ascomycota/metabolism , Endo-1,4-beta Xylanases/chemistry , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Trichoderma/enzymology , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Densitometry/methods , Endo-1,4-beta Xylanases/metabolism , Escherichia coli/metabolism , Introns , Molecular Sequence Data , Mutagenesis, Site-Directed , Oligonucleotides/chemistry , Open Reading Frames , Trichoderma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...