Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 53(1): 447-453, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35023082

ABSTRACT

Corynebacterium pseudotuberculosis is a facultative intracellular pathogen that uses various mechanisms to survive within macrophages. In phagocytosis, this survival can be attributed to the ability to inhibit phagosome-lysosome fusion. In this fusion, some proteins, including Rabs GTPases, are involved in the maturation process and are responsible for regulating membrane vesicle trafficking. Thus, to better understand these mechanisms, the capacity of biofilm-producing and non biofilm-producing strains of Corynebacterium pseudotuberculosis for modulating the expression of endosomal proteins GTPases Rab 5 and Rab 7 was evaluated in an in vitro study of infection of goat macrophages. Blood was collected from ten Canindé goats, infected with biofilm-producing and non biofilm-producing strains of C. pseudotuberculosis. Blood cells were separated in colloidal silica-polyvinylpyrrolidone gradients (GE Healthcare®). These cells were maintained at 37 °C, with 5% of CO2. After differentiation, macrophages were infected with the mentioned strains. The bacterial pellets were marked with Rab 5 and Rab 7 antibodies, and their expression was observed by flow cytometry. Both strains of C. pseudotuberculosis (biofilm-producing and non biofilm-producing) were observed to be capable of altering the expression of Rab proteins in macrophages cultivated in vitro. Macrophages from the animals infected with the biofilm-producing strain had an increase in the expression of Rab 5 protein, mainly when these macrophages were treated with the non biofilm-producing strain. The same mechanism was shown to function with Rab 7 protein, however at a lower intensity of expression when compared with Rab 5.


Subject(s)
Corynebacterium Infections , Corynebacterium pseudotuberculosis , Animals , Biofilms , Corynebacterium Infections/microbiology , Corynebacterium pseudotuberculosis/genetics , Macrophages , Phagocytosis , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
2.
AMB Express ; 11(1): 152, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34792664

ABSTRACT

Leprosy reactions are immune processes that cause neural damage in individuals with leprosy. As periodontitis is an infectious disease related to its development, specific antibodies to periodontal pathogens must be evaluated to better understand the humoral mechanisms underlying this relationship. Therefore, the objective of this study was to standardize an immunoassay to measure IgA specific to P. gingivalis antigens in the saliva of individuals with leprosy. An ELISA checkerboard titration was performed. A validation test involving 53 individuals with leprosy, 24 with and 19 without periodontitis, was conducted and a ROC curve constructed to calculate sensitivity and specificity. The coefficient of the optical densities was 2.21 and 2.66 for P. gingivalis crude extract and the recombinant protein HmuY, respectively. Sensitivity and specificity for the P. gingivalis crude extract were 66.7% and 73.7%, respectively, and for HmuY, were 62.5% and 52.6%, respectively. Specific recognition of P. gingivalis occurred predominantly in individuals with periodontitis, which validates the use of this test for studying periodontitis in individuals with leprosy.Trial registration CAEE 64476117.3.0000.0049, 21/07/2017, retrospectively registered.

SELECTION OF CITATIONS
SEARCH DETAIL
...