Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cryst Growth Des ; 24(11): 4717-4727, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38855578

ABSTRACT

The self-induced formation of core-shell InAlN nanorods (NRs) is addressed at the mesoscopic scale by density functional theory (DFT)-resulting parameters to develop phase field modeling (PFM). Accounting for the structural, bonding, and electronic features of immiscible semiconductor systems at the nanometer scale, we advance DFT-based procedures for computation of the parameters necessary for PFM simulation runs, namely, interfacial energies and diffusion coefficients. The developed DFT procedures conform to experimental self-induced InAlN NRs' concerning phase-separation, core/shell interface, morphology, and composition. Finally, we infer the prospects for the transferability of the coupled DFT-PFM simulation approach to a wider range of nanostructured semiconductor materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...