Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 42(20): 3106-3121, 2021 Aug.
Article in English | MEDLINE | ID: mdl-31997722

ABSTRACT

A multiphase study was proposed to examine microbial communities linked to the nitrogen cycle in the first stage of four full-scale French vertical flow treatment systems. To this end, denaturing gradient gel electrophoresis (DGGE) was performed for structural assessment and quantitative PCR (qPCR) to enumerate the abundance of ammonia-oxidizing (AOB). 16S rRNA sequencing was used to assess the taxonomic profile followed by putative assessment of functional genes. The samples were collected under different conditions, such as operational time (presence/absence of sludge layer on the surface of the filters), season (winter and summer), sampling depth (0, 15 and 30 cm) and operation cycle (rest and feed periods). A structural disparity was noted in the upper layers, whereas higher similarity at 30 cm was observed highlighting the effect of organic matter on bacterial diversity. The 7th rest day was highlighted by an apparent decline in the microbial community abundance. Additionally, qPCR indicated that the largest amount of AOB was found at 30 cm depth and during the feeding period. From the taxonomic profile, Mycobacterium, Acinetobacter, Flavobacterium, and Nitrospira were the most abundant genre found in all systems. The functional prediction results showed predicted genes linked to the denitrification process. The results suggested that operating time and season were responsible for the pattern of the microbial community behavior. This study allowed us to further understand the bacterial dynamics and to advance the idea of design modifications made in the first stage of the classical French system to improve nitrogen removal are promising.


Subject(s)
Microbiota , Wetlands , Ammonia , Microbiota/genetics , Nitrogen , RNA, Ribosomal, 16S/genetics , Wastewater
2.
Water Sci Technol ; 75(12): 2926-2934, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28659533

ABSTRACT

The microorganism community that grows under duckweed shelter can play an important role on treatment processes. Therefore, the present study aimed to assess the zooplankton dynamic and microbial community in duckweed ponds (DPs) applied for domestic wastewater treatment under open field conditions. A pilot system comprised of two DPs in series (DP1 and DP2), with 10 m2 each, received domestic wastewater through a flow rate of 200 L·day-1. Thus, the system was monitored during 314 days through samples collected and analysed weekly. Also, the zooplankton organisms were identified and quantified. DNA sequencing was performed in order to identify the bacterial populations. The findings showed a high efficiency of nutrient removal with 93% and 91% of total phosphorus and total nitrogen, respectively. A high density of microcrustaceans was observed in DP1 reaching 4,700 org.100 mL-1 and rotifers (over than 32,000 org.100 mL-1) in DP2, that could be related to the low suspended solids concentration (<30 mg·L-1) and turbidity (<10 NTU). The bacterial community showed a strong heterogeneity between samples collected along the seasons. Through these findings, it is possible to realise that the understanding of ecology could help to enhance the operation and designs of DPs.


Subject(s)
Araceae , Ponds , Waste Disposal, Fluid , Wastewater/chemistry , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...