Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 23(46): 26120-26129, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34559176

ABSTRACT

This study compares molecular calculations performed with molecular and periodic codes through an investigation of the solvation structures of alkali and alkaline earth metal ions in tetraglyme solution. The two codes are able to produce equivalent structural and energetic information at the same level of theory, and in the presence of the implicit solvation model or not. This comparison reveals that molecular optimisations can be performed with periodic codes and used directly as input models for interface or electrochemistry calculations in order to preserve the solvent-solute interaction and the cavitation energy. By a rigorous comparison, we have demonstrated that equivalent energetic values can be obtained with the conventional PBE-D3 and the newly developed SCAN-rVV10 functionals. Nevertheless, as far as the vibrational features are concerned and when the molecule possesses a highly conjugated system, the SCAN-rVV10 functional is required to describe the vibrational modes properly. The computed IR/Raman spectra can thus be used as essential information to determine the first solvation shell of metal ions in glyme-based solutions. In tetraglyme solution, the alkali and alkaline earth metal ions exhibit a diverse solvation structure. Small ions like Li+ and Mg2+ tend to adopt a coordination number of five or six, while larger ions, Na+, K+, and Ca2+, prefer an eight-coordinated environment, and the metal-ligand interaction increases in the order K+-O < Na+-O < Li+-O < Ca2+-O < Mg2+-O. The solvation spheres play a significant role in the stability and the reactivity of the solvated ions, and can thus be used as input models to construct the solvation structure in more sophisticated electrolytes, such as polyethylene oxide, or perform electrochemical calculations.

2.
Phys Chem Chem Phys ; 13(17): 7675-84, 2011 May 07.
Article in English | MEDLINE | ID: mdl-21327203

ABSTRACT

We have studied electrochemical vibrational and energy properties of CO/Pt(111) in the framework of periodic density functional theory (DFT) calculations. We have used a modified version of the previously developed Filhol-Neurock method to correct the unphysical contributions arising from homogeneous background countercharge in the case of thick metallic slabs. The stability of different CO adsorption sites on Pt(111) (Top, Bridge, Hcp, Fcc) has been studied at constant electric field. The energies are dominated by the surface dipole interaction with the external electric field: a strong positive electric field favors the surfaces with the lower dipole moment (that correspond to the ones with the lower coordination). The Stark tuning slope of the CO stretching frequency for a Top site was calculated for different surface coverages in very good agreement with both experimental and other theoretical results. Finally, we have performed an analysis of the origin of Stark shifts showing that the total Stark effect can be split into two competing components. The first one corresponds to the direct effect of charging on the C-O chemical bond: it is referred as an electrochemical effect. The second is the consequence of the surface dipole interaction with the applied electric field that modifies the C-O distance, inducing a change of the C-O force constant because of C-O bond anharmonicity: it is referred as the electromechanical effect. In the CO/Pt(111) case, the dominant contribution is electromechanical. The electrochemical contribution is very small because the electronic system involved in the surface charging is mostly non-bonding as analyzed by looking at the surface Fukui function.

3.
J Am Chem Soc ; 132(11): 3708-22, 2010 Mar 24.
Article in English | MEDLINE | ID: mdl-20187633

ABSTRACT

A set of stilbene-substituted octasilicates [p-RStil(x)Ph(8-x)SiO(1.5)](8) (R = H, Me, MeO, Cl, NMe(2) and x = 5.3-8) and [o-MeStilSiO(1.5)](8) were prepared. Model compounds were also prepared including the corner and half cages: [p-MeStilSi(OEt)(3)], [p-Me(2)NStilSi(OSiMe(3))(3)], and [p-Me(2)NStilSi(O)(OSiMe)](4). These compounds were characterized by MALDI-TOF, TGA, FTIR, and (1)H NMR techniques. Their photophysical properties were characterized by UV-vis, two-photon absorption, and cathodoluminescence spectroscopy (on solid powders), including studies on the effects of solvent polarity and changes in concentration. These molecules are typically soluble, easily purified, and robust, showing T(d(5%)) > 400 degrees C in air. The full and partial cages all show UV-vis absorption spectra (in THF) identical to the spectrum of trans-stilbene, except for [o-MeStilSiO(1.5)](8), which exhibits an absorption spectrum blue-shifted from trans-stilbene. However, the partial cages show emissions that are red-shifted by approximately 20 nm, as found for stilbene-siloxane macrocycles, suggesting some interaction of the silicon center(s) with the stilbene pi* orbital in both the corner and half cages. In contrast, the emission spectra of the full cages show red-shifts of 60-100 nm. These large red-shifts are supported by density functional theoretical calculations and proposed to result from interactions of the stilbene pi* orbitals with a LUMO centered within the cage that has 4A(1) symmetry and involves contributions from all Si and oxygen atoms and the organic substituents. Given that this LUMO has 3-D symmetry, it appears that all of the stilbene units interact in the excited state, consistent with theoretical results, which show an increased red-shift with an increase in the functionalization of a single corner to functionalization of all eight corners with stilbene. In the case of the Me(2)N- derivatives, this interaction is primarily a charge-transfer interaction, as witnessed by the influence of solvent polarity on the emission behavior. More importantly, the two-photon absorption behavior is 2-3 times greater on a per p-Me(2)Nstilbene basis for the full cage than for the corner or half cages. Similar observations were made for p-NH(2)stilbenevinyl(8)OS cages, where the greater conjugation lengths led to even greater red-shifts (120 nm) and two-photon absorption cross sections. Cathodoluminescence studies done on [p-MeStilSiO(1.5)](8) or [p-MeStilOS](8) powders exhibit essentially the same emissions as seen in solution at high dilution. Given that only the emissions are greatly red-shifted in these molecules, whereas the ground-state UV-vis absorptions are not changed from trans-stilbene, except for the ortho derivative, which is blue-shifted 10 nm. It appears that the interactions are only in the excited state. Theoretical results show that the HOMO and LUMO states are always the pi and pi* states on the stilbene, which show very weak shifts with increasing degrees of functionalization, consistent with the small changes in the UV-vis spectra. The band gap between the lowest unoccupied 4a1 symmetry core state localized inside the silsesquioxane cage and the highest occupied state (pi state on stilbene), however, is markedly decreased as the number of stilbene functional groups is increased. This is consistent with the significant red-shifts in the emission spectra. The results suggest that the emission occurs from the 4a1 state localized on the cage. Moreover, for the compounds [p-RStil(6-7)Ph(2-1)OS](8), the emissions are blue-shifted compared to those of the fully substituted compounds, suggesting the molecular symmetry is reduced (from cubic), thereby reducing the potential for 3-D delocalization and raising the energy of the LUMO. The implications are that these octafunctional molecules exhibit some form of 3-D interaction in the excited state that might permit their use as molecular transistors as well as for energy collection and dispersion as molecular antennas, for example, and for nonlinear optical applications.

4.
J Am Chem Soc ; 126(10): 3228-33, 2004 Mar 17.
Article in English | MEDLINE | ID: mdl-15012152

ABSTRACT

The catalytic activity of a 4 monolayer deposit of Pd on a Ni(110) surface toward the hydrogenation of ethylene is investigated by using gradient-corrected periodic density functional calculations. The Pd/Ni(110) surface is strongly nanostructured, due to the anisotropic stress induced by the Ni(110) substrate on the Pd layer. A kinetic analysis, based on the investigation of the optimal reaction pathway for the hydrogenation of ethylene to ethane, is presented, allowing a comparison between Pd/Ni(110) and pure Pd(110) surfaces. The calculated activation energies allow one to reproduce the experimental result, which shows that the Pd/Ni(110) surface is about 30 times more active than the pure Pd(110) surface. This marked increase of the catalytic activity is a consequence of the specific nanostructure of the Pd/Ni(110) surface. By examining the structure of the adsorbed species and of the transition states and by analyzing the electronic properties, we show that this rate increase can be associated to the fact that the ethylene adsorption energy in the first hydrogenation step and the ethyl-hydrogen coadsorption energy in the second step are both much lower on Pd/Ni(110) than on pure Pd(110).

5.
Phys Rev Lett ; 89(14): 146106, 2002 Sep 30.
Article in English | MEDLINE | ID: mdl-12366060

ABSTRACT

The structure of a four monolayer deposit of Pd on Ni(110) has been determined by a combination of x-ray diffraction experiments and density-functional theory calculations. This Pd film presents, after annealing at 500 K, a (Nx2) reconstruction associated with a large enhancement of its catalytic activity. The N superstructure, along the dense [11;0] direction, comes from periodic edge dislocations initiated by a vacancy in the first Pd layer. In the perpendicular direction, the doubling of the period originates in a pairing-buckling displacement of the rows. This study evidences a new Pd atoms arrangement with quasi-four-fold hollow sites on the surface, which could play an important role in the exceptional catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...