Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Adv ; 52: 107833, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34481893

ABSTRACT

Bioeconomy is seen as a way to mitigate the carbon footprint of human activities by reducing at least part of the fossil resources-based economy. In this new paradigm of sustainable development, the use of enzymes as biocatalysts will play an increasing role to provide services and goods. In industry, most of multicomponent enzyme cocktails are of fungal origin. Filamentous fungi secrete complex enzyme sets called "secretomes" that can be utilized as enzyme cocktails to valorize different types of bioresources. In this review, we highlight recent advances in the study of fungal secretomes using improved computational and experimental secretomics methods, the progress in the understanding of industrially important fungi, and the discovery of new enzymatic mechanisms and interplays to degrade renewable resources rich in polysaccharides (e.g. cellulose). We review current biotechnological applications focusing on the benefits and challenges of fungal secretomes for industrial applications with some examples of commercial cocktails of fungal origin containing carbohydrate-active enzymes (CAZymes) and we discuss future trends.


Subject(s)
Fungal Proteins , Fungi , Proteomics , Secretome , Biotechnology , Cellulose , Fungal Proteins/metabolism , Fungi/enzymology , Fungi/metabolism
2.
Biotechnol Biofuels ; 12: 55, 2019.
Article in English | MEDLINE | ID: mdl-30923563

ABSTRACT

BACKGROUND: Lignocellulosic biomass is considered as a promising alternative to fossil resources for the production of fuels, materials and chemicals. Efficient enzymatic systems are needed to degrade the plant cell wall and overcome its recalcitrance. A widely used producer of cellulolytic cocktails is the ascomycete Trichoderma reesei, but this organism secretes a limited set of enzymes. To improve the saccharification yields, one strategy is to upgrade the T. reesei enzyme cocktail with enzymes produced by other biomass-degrading filamentous fungi isolated from biodiversity. RESULTS: In this study, the enzymatic cocktails secreted by five strains from the genus Aspergillus (Aspergillus japonicus strains BRFM 405, 1487, 1489, 1490 and Aspergillus niger strain BRFM 430) were tested for their ability to boost a T. reesei reference cocktail for the saccharification of pretreated biomass. Proteomic analysis of fungal secretomes that significantly improved biomass degradation showed that the presence of proteins belonging to a putative LPMO family previously identified by genome analysis and awaiting experimental demonstration of activity. Members of this novel LPMO family, named AA16, are encountered in fungi and oomycetes with life styles oriented toward interactions with plant biomass. One AA16 protein from Aspergillus aculeatus (AaAA16) was produced to high level in Pichia pastoris. LPMO-type enzyme activity was demonstrated on cellulose with oxidative cleavage at the C1 position of the glucose unit. AaAA16 LPMO was found to significantly improve the activity of T. reesei CBHI on cellulosic substrates. CONCLUSIONS: Although Aspergillus spp. has been investigated for decades for their CAZymes diversity, we identified members of a new fungal LPMO family using secretomics and functional assays. Properties of the founding member of the AA16 family characterized herein could be of interest for use in biorefineries.

SELECTION OF CITATIONS
SEARCH DETAIL
...