Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(21): 14824-14842, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37902628

ABSTRACT

We synthesized new pyrrole and indole derivatives as human carbonic anhydrase (hCA) inhibitors with the potential to inhibit the Wnt/ß-catenin signaling pathway. The presence of both N1-(4-sulfonamidophenyl) and 3-(3,4,5-trimethoxyphenyl) substituents was essential for strong hCA inhibitors. The most potent hCA XII inhibitor 15 (Ki = 6.8 nM) suppressed the Wnt/ß-catenin signaling pathway and its target genes MYC, Fgf20, and Sall4 and exhibited the typical markers of apoptosis, cleaved poly(ADP-ribose)polymerase, and cleaved caspase-3. Compound 15 showed strong inhibition of viability in a panel of cancer cells, including colorectal cancer and triple-negative breast cancer cells, was effective against the NCI/ADR-RES DOX-resistant cell line, and restored the sensitivity to doxorubicin (DOX) in HT29/DX and MDCK/P-gp cells. Compound 15 is a novel dual-targeting compound with activity against hCA and Wnt/ß-catenin. It thus has a broad targeting spectrum and is an anticancer agent with specific potential in P-glycoprotein overexpressing cell lines.


Subject(s)
Carbonic Anhydrases , Neoplasms , Humans , Structure-Activity Relationship , Drug Resistance, Multiple , Wnt Signaling Pathway , Drug Resistance, Neoplasm , Carbonic Anhydrases/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrase IX , Molecular Structure , Benzenesulfonamides
2.
Exp Hematol Oncol ; 12(1): 82, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749607

ABSTRACT

BACKGROUND: The pattern recognition receptor long pentraxin-3 (PTX3) plays conflicting roles in cancer by acting as an oncosuppressor or as a pro-tumor mediator depending on tumor context. Triple negative breast cancer (TNBC) represents the most aggressive histotype of breast cancer, characterized by the lack of efficacious therapeutic targets/approaches and poor prognosis. Thus, the characterization of new molecular pathways and/or alternative druggable targets is of great interest in TNBC. METHODS: The expression of PTX3 in BC tumor samples and in BC cell lines has been analyzed using the Gene Expression-Based Outcome for Breast Cancer Online (GOBO), qPCR, Western blot and ELISA assay. The contribution of tumor and stromal cells to PTX3 production in TNBC was assessed by analyzing single cell RNA sequencing data and RNAscope performed on TNBC tumor samples. In order to investigate the effects of PTX3 in TNBC, different cell lines were engineered to knock-down (MDA-MB-231 and BT549 cells) or overexpress (MDA-MB-468 and E0771 cells) PTX3. Finally, using these engineered cells, in vitro (including gene expression profiling and gene set enrichment analyses) and in vivo (orthotopic tumor models in immune-compromised and immune competent mice) analyses were performed to assess the role and the molecular mechanism(s) exerted by PTX3 in TNBC. RESULTS: In silico and experimental data indicate that PTX3 is mainly produced by tumor cells in TNBC and that its expression levels correlate with tumor stage. Accordingly, gene expression and in vitro results demonstrate that PTX3 overexpression confers a high aggressive/proliferative phenotype and fosters stem-like features in TNBC cells. Also, PTX3 expression induces a more tumorigenic potential when TNBC cells are grafted orthotopically in vivo. Conversely, PTX3 downregulation results in a less aggressive behavior of TNBC cells. Mechanistically, our data reveal that PTX3 drives the activation of the pro-tumorigenic Toll-like receptor 4 (TLR4) signaling pathway in TNBC, demonstrating for the first time that the PTX3/TLR4 autocrine stimulation loop contributes to TNBC aggressiveness and that TLR4 inhibition significantly impacts the growth of PTX3-producing TNBC cells. CONCLUSION: Altogether, these data shed light on the role of tumor-produced PTX3 in TNBC and uncover the importance of the PTX3/TLR4 axis for therapeutic and prognostic exploitation in TNBC.

3.
Cancers (Basel) ; 14(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36497228

ABSTRACT

Cell lines have always constituted a good investigation tool for cancer research, allowing scientists to understand the basic mechanisms underlying the complex network of phenomena peculiar to the transforming path from a healthy to cancerous cell. The introduction of CRISPR in everyday laboratory activity and its relative affordability greatly expanded the bench lab weaponry in the daily attempt to better understand tumor biology with the final aim to mitigate cancer's impact in our lives. In this review, we aim to report how this genome editing technique affected in the in vitro modeling of different aspects of tumor biology, its several declinations, and analyze the advantages and drawbacks of each of them.

4.
Biomedicines ; 10(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36359228

ABSTRACT

Macrophages are the most abundant immune cells of the tumor microenvironment (TME) and have multiple important functions in cancer. During tumor growth, both tissue-resident macrophages and newly recruited monocyte-derived macrophages can give rise to tumor-associated macrophages (TAMs), which have been associated with poor prognosis in most cancers. Compelling evidence indicate that the high degree of plasticity of macrophages and their ability to self-renew majorly impact tumor progression and resistance to therapy. In addition, the microenvironmental factors largely affect the metabolism of macrophages and may have a major influence on TAMs proliferation and subsets functions. Thus, understanding the signaling pathways regulating TAMs self-renewal capacity may help to identify promising targets for the development of novel anticancer agents. In this review, we focus on the environmental factors that promote the capacity of macrophages to self-renew and the molecular mechanisms that govern TAMs proliferation. We also highlight the impact of tumor-derived factors on macrophages metabolism and how distinct metabolic pathways affect macrophage self-renewal.

5.
J Enzyme Inhib Med Chem ; 37(1): 1857-1869, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35768159

ABSTRACT

Among the chemotypes studied for selective inhibition of tumour-associated carbonic anhydrases (CAs), SLC-0111, a ureido-bearing benzenesulfonamide CA IX inhibitor, displayed promising antiproliferative effects in cancer cells in vitro and in vivo, being in Phase Ib/II clinical development. To explore the structural characteristics required for better discrimination of less conserved regions of the enzyme, we investigate the incorporation of the urea linker into an imidazolidin-2-one cycle, a modification already explored previously for obtaining CA inhibitors. This new library of compounds inhibited potently four different hCAs in the nanomolar range with a different isoform selectivity profile compared to the lead SLC-0111. Several representative CA IX inhibitors were tested for their efficacy to inhibit the proliferation of glioblastoma, pancreatic, and breast cancer cells expressing CA IX, in hypoxic conditions. Unlike previous literature data on SLC-149, a structurally related sulphonamide to compounds investigated here, our data reveal that these derivatives possess promising anti-proliferative effects, comparable to those of SLC-0111.


Subject(s)
Breast Neoplasms , Glioblastoma , Antigens, Neoplasm , Breast Neoplasms/drug therapy , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Female , Glioblastoma/drug therapy , Humans , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacology , Benzenesulfonamides
SELECTION OF CITATIONS
SEARCH DETAIL
...