Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35740475

ABSTRACT

The inoculum effect (IE) is a well-known phenomenon with beta-lactams. At the same time, the IE has not been extensively studied with carbapenem/carbapenemase inhibitor combinations. The antibiotic-to-inhibitor concentration ratio used in susceptibility testing can influence the in vitro activity of the combination. To explore the role of these factors, imipenem/relebactam and doripenem/relebactam MICs were estimated against six Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae strains at standard inocula (SI) and high inocula (HI) by two methods: with a fixed relebactam concentration and with a fixed, pharmacokinetic-based carbapenem-to-relebactam concentration ratio. The combination MICs at HI, compared to SI, increased with most of the tested strains. However, the IE occurred with only two K. pneumoniae strains regardless of the MIC testing method. The relationship between the MICs at SI and the respective inoculum-induced MIC changes was observed when the MICs were estimated at pharmacokinetic-based carbapenem-to-relebactam concentration ratios. Thus, (1) IE was observed with both carbapenem/relebactam combinations regardless of the MIC testing method; however, IE was not observed frequently among tested K. pneumoniae strains. (2) At HI, carbapenem/relebactam combination MICs increased to levels associated with carbapenem resistance. (3) Combination MICs determined at pharmacokinetic-based carbapenem-to-inhibitor concentration ratios predict susceptibility elevations at HI in KPC-producing K. pneumoniae.

2.
ACS Omega ; 7(8): 6728-6736, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35252668

ABSTRACT

The problem of microbial growth on various surfaces has increased concern in society in the context of antibiotic misuse and the spreading of hospital infections. Thus, the development of new, antibiotic-free antibacterial strategies is required to combat bacteria resistant to usual antibiotic treatments. This work reports a new method for producing an antibiotic-free antibacterial halloysite-based nanocomposite with silver nanoparticles and phosphomolybdic acid as biocides, which can be used as components of smart antimicrobial coatings. The composite was characterized by using energy-dispersive X-ray fluorescence spectroscopy and transmission electron microscopy. The release of phosphomolybdic acid from the nanocomposite was studied by using UV-vis spectroscopy. It was shown that the antibiotic-free nanocomposite consisting of halloysite nanotubes decorated with silver nanoparticles loaded with phosphomolybdic acid and treated with calcium chloride possesses broad antibacterial properties, including the complete growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa bacteria at a 0.5 g × L-1 concentration and Acinetobacter baumannii at a 0.25 g × L-1 concentration.

3.
Antibiotics (Basel) ; 10(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34943731

ABSTRACT

Traditionally, the antibacterial activity of ß-lactam antibiotics in the presence of ß-lactamase inhibitors is determined at the fixed inhibitor concentration. This traditional approach does not consider the ratio of antibiotic-to-inhibitor concentrations achieved in humans. To explore whether an alternative pharmacokinetically based approach to estimate MICs in combinations is predictive of antimicrobial efficacy, the effects of imipenem and doripenem alone and in combination with relebactam were studied in time-kill experiments against carbapenemase-producing Klebsiella pneumoniae. The carbapenem-to-relebactam concentration ratios in time-kill assays were equal to the therapeutic 24-h area under the concentration-time curve (AUC) ratios of the drugs (1.5/1). The simulated levels of carbapenem and relebactam were equal to their concentrations achieved in humans. When effects of combined regimens were plotted against respective C/MICs, a sigmoid relationship was obtained only with MICs determined by pharmacokinetically based method. The effectiveness of both carbapenems in the presence of relebactam was comparable by the results of time-kill experiments. These findings suggest that (1) antibiotic/inhibitor MICs determined at a pharmacokinetically based concentration ratio allow an adequate assessment of carbapenem susceptibility in carbapenemase-producing K. pneumoniae strains and can be used to predict antibacterial effects; (2) in time-kill experiments, the effects of imipenem and doripenem in the presence of relebactam are comparable.

4.
Biochem Biophys Res Commun ; 546: 145-149, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33582557

ABSTRACT

In times of widespread multiple antibiotic resistance, the bacterial colonization of crucial medical surfaces should be detected as fast as possible. In this work, we present the non-destructive SERS method for the detection of bacterial colonization. SERS is an excellent tool for the monitoring of suitable substances in low concentrations. The SERS substrate was prepared by the aggregation of citrate-stabilized gold nanoparticles and the adsorption of the reporters (crystal violet, thiamine, and adenine). We have tested the substrate for the detection of clinically relevant S. aureus and P. aeruginosa bacteria. The SERS spectra before and after the substrate incubation revealed the degradation of the reporter by the growing bacteria. The growth of P. aeruginosa was detected using the substrates with preadsorbed crystal violet or adenine. The suitable reporter for the detection of S. aureus remains to be discovered. The selection of the reporters resistant to exposure but easily degraded by bacteria will open the way for the in situ monitoring of bacterial colonization, thus complementing the arsenal of methods in the battle against hospital infections.


Subject(s)
Adenine/chemistry , Gentian Violet/chemistry , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/isolation & purification , Spectrum Analysis, Raman/methods , Citric Acid/chemistry , Gold/chemistry , Metal Nanoparticles/analysis , Metal Nanoparticles/chemistry , Molecular Probes/analysis , Molecular Probes/chemistry , Staphylococcus aureus , Thiamine/chemistry
5.
Front Microbiol ; 4: 186, 2013.
Article in English | MEDLINE | ID: mdl-23847609

ABSTRACT

Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 (RPS5) found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant RPS5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation [ca. 10(-5) colony-forming units (CFUs)] indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer (HGT).

SELECTION OF CITATIONS
SEARCH DETAIL
...