Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255824

ABSTRACT

Every land plant exists in a close relationship with microbial communities of several niches: rhizosphere, endosphere, phyllosphere, etc. The growth and yield of potato-a critical food crop worldwide-highly depend on the diversity and structure of the bacterial and fungal communities with which the potato plant coexists. The potato plant has a specific part, tubers, and the soil near the tubers as a sub-compartment is usually called the "geocaulosphere", which is associated with the storage process and tare soil microbiome. Specific microbes can help the plant to adapt to particular environmental conditions and resist pathogens. There are a number of approaches to modulate the microbiome that provide organisms with desired features during inoculation. The mechanisms of plant-bacterial communication remain understudied, and for further engineering of microbiomes with particular features, the knowledge on the potato microbiome should be summarized. The most recent approaches to microbiome engineering include the construction of a synthetic microbial community or management of the plant microbiome using genome engineering. In this review, the various factors that determine the microbiome of potato and approaches that allow us to mitigate the negative impact of drought and pathogens are surveyed.


Subject(s)
Microbiota , Mycobiome , Solanum tuberosum , Communication , Soil
2.
Plants (Basel) ; 11(1)2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35009127

ABSTRACT

Rhodiola rosea L. is a valuable medicinal plant with adaptogenic, neuroprotective, antitumor, cardioprotective, and antidepressant effects. In this study, design of experiments methodology was employed to analyze and optimize the interacting effects of mineral compounds (concentration of NO3- and the ratio of NH4+ to K+) and two plant growth regulators [total 6-benzylaminopurine (BAP) and α-naphthylacetic acid (NAA) concentration and the ratio of BAP to NAA] on the growth and the production of total phenolic compounds (TPCs) in R. rosea calluses. The overall effect of the model was highly significant (p < 0.0001), indicating that NH4+, K+, NO3-, BAP, and NAA significantly affected growth. The best callus growth (703%) and the highest production of TPCs (75.17 mg/g) were achieved at an NH4+/K+ ratio of 0.33 and BAP/NAA of 0.33, provided that the concentration of plant growth regulators was 30 µM and that of NO3- was ≤40 mM. According to high-performance liquid chromatography analyses of aerial parts (leaves and stems), in vitro seedlings and callus cultures of R. rosea contain no detectable rosarin, rosavin, rosin, and cinnamyl alcohol. This is the first report on the creation of an experiment for the significant improvement of biomass accumulation and TPC production in callus cultures of R. rosea.

SELECTION OF CITATIONS
SEARCH DETAIL
...