Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 8044, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35577879

ABSTRACT

Anterior cruciate ligament (ACL) tear is one of the most common knee injuries. The ACL reconstruction surgery aims to restore healthy knee function by replacing the injured ligament with a graft. Proper selection of the optimal surgery parameters is a complex task. To this end, we developed an automated modeling framework that accepts subject-specific geometries and produces finite element knee models incorporating different surgical techniques. Initially, we developed a reference model of the intact knee, validated with data provided by the Open Knee(s) project. This helped us evaluate the effectiveness of estimating ligament stiffness directly from MRI. Next, we performed a plethora of "what-if" simulations, comparing responses with the reference model. We found that (a) increasing graft pretension and radius reduces relative knee displacement, (b) the correlation of graft radius and tension should not be neglected, (c) graft fixation angle of 20[Formula: see text] can reduce knee laxity, and (d) single-versus double-bundle techniques demonstrate comparable performance in restraining knee translation. In most cases, these findings confirm reported values from comparative clinical studies. The numerical models are made publicly available, allowing for experimental reuse and lowering the barriers for meta-studies. The modeling approach proposed here can complement orthopedic surgeons in their decision-making.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction/methods , Biomechanical Phenomena , Finite Element Analysis , Humans , Knee Joint/diagnostic imaging , Knee Joint/surgery
2.
Sensors (Basel) ; 21(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807832

ABSTRACT

This study aims to explore the possibility of estimating a multitude of kinematic and dynamic quantities using subject-specific musculoskeletal models in real-time. The framework was designed to operate with marker-based and inertial measurement units enabling extensions far beyond dedicated motion capture laboratories. We present the technical details for calculating the kinematics, generalized forces, muscle forces, joint reaction loads, and predicting ground reaction wrenches during walking. Emphasis was given to reduce computational latency while maintaining accuracy as compared to the offline counterpart. Notably, we highlight the influence of adequate filtering and differentiation under noisy conditions and its importance for consequent dynamic calculations. Real-time estimates of the joint moments, muscle forces, and reaction loads closely resemble OpenSim's offline analyses. Model-based estimation of ground reaction wrenches demonstrates that even a small error can negatively affect other estimated quantities. An application of the developed system is demonstrated in the context of rehabilitation and gait retraining. We expect that such a system will find numerous applications in laboratory settings and outdoor conditions with the advent of predicting or sensing environment interactions. Therefore, we hope that this open-source framework will be a significant milestone for solving this grand challenge.


Subject(s)
Gait , Walking , Biomechanical Phenomena , Muscles
3.
Comput Med Imaging Graph ; 89: 101890, 2021 04.
Article in English | MEDLINE | ID: mdl-33756303

ABSTRACT

The incorporation of a-priori knowledge on the shape of anatomical structures and their variation through Statistical Shape Models (SSMs) has shown to be very effective in guiding highly uncertain image segmentation problems. In this paper, we construct multiple-structure SSMs of purely geometric nature, that describe the relationship between adjacent anatomical components through Canonical Correlation Analysis. Shape inference is then conducted based on a regularization term on the shape likelihood providing more reliable structure representations. A fundamental prerequisite for performing statistical shape analysis on a set of objects is the identification of corresponding points on their associated surfaces. We address the correspondence problem using the recently proposed Functional Maps framework, which is a generalization of point-to-point correspondence to manifolds. Additionally, we show that, by incorporating techniques from the deep learning theory into this framework, we can further enhance the ability of SSMs to better capture the shape variation in a given dataset. The efficiency of our approach is illustrated through the creation of 3D models of the human knee complex in two application scenarios: incomplete or noisy shape reconstruction and missing structure estimation.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Humans , Knee Joint/diagnostic imaging , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...