Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773003

ABSTRACT

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Subject(s)
Environmental Monitoring , Rivers , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Brazil , Rivers/chemistry , Biomarkers/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Metals/analysis , Characidae , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Geologic Sediments/chemistry , Fishes/metabolism
2.
Chemosphere ; 349: 140812, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38036225

ABSTRACT

Bioaccumulation studies in fish mark the initial phase of assessing the risk of chemical exposure to biota and human populations. The Iguaçu River boasting a diverse endemic ichthyofauna, is grappling with the repercussions of human activities. This study delved into the bioaccumulation of micropollutants, the early-warning effects on Rhamdia quelen and Oreochomis niloticus in the Segredo Reservoir (HRS) and the potential risk of human exposure. Two groups of caged fish in three sites of the reservoir were exposed during the autumn-winter and spring-summer, while a third group (O. niloticus) underwent a twelve-month exposure, and inorganic and organic chemicals analysis in water, sediment, and biota. Additionally, metallothionein expression and genotoxicity were employed as biomarkers. PAHs, PCBs, Al, Cu, Fe, and As in water and DDTs, Cu, Zn, and As in sediment surpassed the thresholds set by Brazilian regulations, where DDT exhibited bioaccumulation in muscle, alongside metals in liver, kidney, gills, and muscle tissues. R. quelen showed metallothionein expression whereas DNA damage and NMA frequencies were elevated in target organs and in brain and erythrocytes of O. niloticus during summer. In this species the DNA damage in liver was remarkable after twelve months. Target Hazard Quotients and Cancer Risk values shedding light on the vulnerability of both children and adults. The reservoir's conditions led to heightened sensitivity to micropollutants for R. quelen species. The data presented herein provides decision-makers with pertinent insights to facilitate effective management and conservation initiatives within the Iguaçu Basin.


Subject(s)
Catfishes , Environmental Pollutants , Animals , Child , Humans , Rivers , Brazil , Environmental Monitoring , Bioaccumulation , Water , Metallothionein
3.
Food Chem Toxicol ; 184: 114350, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097007

ABSTRACT

Melanoma is a type of skin cancer considered aggressive due to its high metastatic ability and rapid progression to other tissues and organs. BDE-209 (2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether) is an additive used as a flame retardant and classified as a persistent organic pollutant that has a high bioaccumulation capacity due to its lipophilic nature. This substance has already been detected in rivers, air, soil, plants and even in different human biological samples, such as plasma, umbilical cord blood and breast milk, revealing a great concern to human populations. Thus, in the current study we investigated whether prior exposure of murine melanoma B16-F1 cells to BDE-209 modulates in vivo progression and malignancy of melanoma. B16-F1 cells were cultured and exposed in vitro to BDE-209 (0.01, 0.1 e 1 nM) for 15 days and then inoculated, via caudal vein, in C57BL/6 mice for experimental metastasis analysis after 20 days. Inoculation of BDE-209-exposed cells resulted in 82% increase of metastasis colonized area in the lungs of mice, downregulation of tumor suppressors genes, such as Timp3 and Reck, decrease of lipid peroxidation and increase of systemic and local inflammatory response. These findings are related to melanoma progression. Additionally, the histopathological analysis revealed greater number of focal points of metastases in the lungs and invasiveness of metastases to the mice brain (89%). The results showed that exposure to BDE-209 may alter the phenotype of B16-F1 cells, worsening their metastatic profile. Current data showed that BDE-209 may interfere with the prognosis of melanoma by modulating cells with less invasiveness capacity to a more aggressive profile.


Subject(s)
Melanoma, Experimental , Melanoma , Skin Neoplasms , Female , Humans , Animals , Mice , Melanoma/pathology , Mice, Inbred C57BL , Halogenated Diphenyl Ethers , Melanoma, Experimental/pathology
4.
Environ Pollut ; 313: 120140, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36100121

ABSTRACT

TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) and BDE-209 (decabromodiphenyl ether) are persistent organic pollutants (POPs) produced by industrial activities and associated with several diseases. TCDD is a known human carcinogen, but few studies investigated about the effects of exposure to both compounds, i.e., whether BDE-209 and TCDD can render tumor cells more aggressive and metastatic. In the current study we investigated if the exposure of B16-F1 and B16-F10 melanoma murine cells to environmental relevant concentrations of TCDD and BDE-209 at 24 h and 15-day exposure modulates the expression of genes related to metastasis, making the cells more aggressive. Both pollutants did not affect cell viability but lead to increase of cell proliferation, including the upregulation of vimentin, MMP2, MMP9, MMP14 and PGK1 gene expression and downregulation of E-cadherin, TIMP2, TIMP3 and RECK, strongly suggesting changes in cell phenotypes defined as epithelial to mesenchymal transition (EMT) in BDE-209 and TCDD-exposed cells. Foremost, increased expression of metalloproteinases and decreased expression of their inhibitors made B16-F1 cells similar the more aggressive B16-F10 cell line. Also, the higher secretion of extracellular vesicles by cells after acute exposure to BDE-209 could be related with the phenotype changes. These results are a strong indication of the potential of BDE-209 and TCDD to modulate cell phenotype, leading to a more aggressive profile.


Subject(s)
Environmental Pollutants , Melanoma , Polychlorinated Dibenzodioxins , Animals , Cadherins , Carcinogens , Environmental Pollutants/pharmacology , Epithelial-Mesenchymal Transition , GPI-Linked Proteins , Halogenated Diphenyl Ethers , Humans , Matrix Metalloproteinase 14/pharmacology , Matrix Metalloproteinase 2/pharmacology , Matrix Metalloproteinase 9 , Mice , Persistent Organic Pollutants , Polychlorinated Dibenzodioxins/toxicity , Vimentin/pharmacology
5.
Environ Sci Pollut Res Int ; 29(8): 11291-11303, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34535858

ABSTRACT

Cancer is one of the leading causes of mortality worldwide. Even with the advances of pharmaceutical industry and treatments, the mortality rate for various types of cancer remains high. In particular, phenotypic alterations of tumor cells concerning drug efflux, migratory and invasive capabilities may represent a hurdle for cancer treatment and contribute to poor prognosis. In the present study, we investigated the effects of polybrominated diphenyl ethers (PBDEs) used as flame retardants on phenotypic features of melanoma cells that are important for cancer. Murine melanoma B16-F1 (less metastatic) and B16-F10 (more metastatic) cells were exposed to 0.01-1.0 nM of BDE-47 (2,2',4,4'-tetrabromodiphenyl ether), BDE-99 (2,2',4,4',5-pentabromodiphenyl ether), and the mixture of both (at 0.01 nM) for 24 h (acute exposure) and 15 days (chronic exposure). The polybrominated diphenyl ethers (PBDEs) did not affect cell viability but led to increased drug efflux transporter activity, cell migration, and colony formation, as well as overexpression of Abcc2 (ATP-binding cassette subfamily C member 2), Mmp-2 (matrix metalloproteinase-2), Mmp-9 (matrix metalloproteinase-9), and Tp53 (tumor protein p53) genes and downregulation of Timp-3 (tissue inhibitor of metalloproteinase 3) gene in B16-F10 cells. These effects are consistent with increased aggressiveness and malignancy of tumors due to exposure to the flame retardants and raise some concerns on the effects such chemicals may have on melanoma treatment and cancer prognosis.


Subject(s)
Flame Retardants , Melanoma , Polybrominated Biphenyls , Animals , Halogenated Diphenyl Ethers , Matrix Metalloproteinase 2 , Mice , Phenotype
6.
J Trace Elem Med Biol ; 68: 126854, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34488184

ABSTRACT

BACKGROUND: Silver nanoparticles (AgNP) are largely used in nanotechnological products, but the real risks for human and environment are still poorly understood if we consider the effects of mixtures of AgNP and environmental contaminants, such as non-essential metals. METHODS: The aim of the present study was to investigate the cytotoxicity and toxicological interaction of AgNP (1-4 nm, 0.36 and 3.6 µg mL-1) and cadmium (Cd, 1 and 10 µM) mixtures. The murine macrophage cell line RAW 264.7 was used as a model. RESULTS: Effects were observed after a few hours (4 h) on reactive oxygen species (ROS) and became more pronounced after 24 h-exposure. Cell death occurred by apoptosis, and loss of cell viability (24 h-exposure) was preceded by increases of ROS levels and DNA repair foci, but not of NO levels. Co-exposure potentiated some effects (decrease of cell viability and increase of ROS and NO levels), indicating toxicological interaction. CONCLUSION: These effects are important findings that must be better investigated, since the interaction of Cd with AgNP from nanoproducts may impair the function of macrophages and represent a health risk for humans.


Subject(s)
Metal Nanoparticles , Silver , Animals , Cadmium/toxicity , Cadmium Chloride , Cell Line , Cell Survival , Humans , Macrophages , Metal Nanoparticles/toxicity , Mice , Reactive Oxygen Species , Silver/toxicity
7.
Chemosphere ; 268: 128785, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33168290

ABSTRACT

The presence of 2,4,6-Tribromophenol (TBP) in the environment increased the risk of exposure to aquatic organisms affecting the animal development or metabolism. The current study investigated the low, subchronic and trophic effect of TBP in both, male and female adult of Oreochromis niloticus. The fish were exposed to 0.5 or 50 ng g-1 of TBP every ten days for 70 days. Then, hepatosomatic (HSI) and gonadosomatic (GSI) indexes, erythrocyte parameters (hemoglobin content, nuclear morphology and morphometrical abnormalities), biochemical endpoints (glutathione S-Transferase and catalase activities, non-protein thiols, lipid peroxidation and protein carbonylation levels in the liver; and acetylcholinesterase activity in the brain and muscle), histopathological analysis (liver) and vitellogenin levels (plasma) were considered. TBP affected the HSI in male and female fish, but not the GSI. Principal Component Analysis revealed that erythrocytes from males are more sensitive to TBP exposure. Likewise, TBP induced the expression of vitellogenin, CAT activity and liver lesion in male fish comparatively with control group, but GST and NPT were influenced only by sex. Finally, the results showed that the antioxidant mechanism and cholinesterase activity effects were more pronounced in male than in female. The current data shows evidences of estrogenic endocrine disruption and toxicity in O. niloticus exposed to TBP, revealing the risk of exposure to biota.


Subject(s)
Cichlids , Water Pollutants, Chemical , Animals , Catalase/metabolism , Cichlids/metabolism , Female , Lipid Peroxidation , Liver/metabolism , Male , Oxidative Stress , Phenols/metabolism , Phenols/toxicity , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity
8.
Acta Cir Bras ; 35(11): e351106, 2020.
Article in English | MEDLINE | ID: mdl-33331456

ABSTRACT

PURPOSE: To evaluate renal histological changes by stereology and morphometry and analyze the main markers of oxidative stress in rats undergoing natural aging. METHODS: Seventy two Wistar rats were divided into six groups of 12 rats each, which were euthanized at 3, 6, 9, 12, 18, and 24 months of age. Right kidney was stereologically and morphometrically analyzed to calculate the volumetric density (Vv[glom]), numerical density (Nv[glom]) and glomerular volume (Vol[glom]). Left kidney was used to determine the levels of nonprotein thiols, lipid peroxidation, and protein carbonylation, as well as the activities of superoxide-dismutase and catalase enzymes. RESULTS: Both Vv[glom] and Nv[glom] values showed gradual decreases between groups. Activity of superoxide-dismutase was elevated at 24 months of age, and the levels of nonprotein thiols were higher in older animals. Greater catalase activity and protein carbonylation were observed in animals between 6 and 12 months of age but lessened in older rats. Lipid peroxidation decreased in the older groups. CONCLUSIONS: Morphometric and stereological analyses revealed a gradual decrease in the volume and density of renal glomeruli during aging, as well as kidney atrophy. These findings related to oxidative stress clarify many changes occurring in kidney tissues during senescence in rats.


Subject(s)
Kidney Diseases , Kidney , Aging , Animals , Catalase/metabolism , Kidney/metabolism , Lipid Peroxidation , Oxidative Stress , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
9.
Toxicol Mech Methods ; 30(9): 635-645, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32746672

ABSTRACT

Gold (AuNP) and silver (AgNP) nanoparticles have been incorporated into many therapeutic and diagnostic applications. However, previous studies revealed toxic properties as well as the hormesis phenomenon of many nanoparticles in different biological models. To evaluate the effects of low concentrations of AuNP and AgNP on murine melanoma cells B16F1 and B16F10 and relate them with phenotype changes, cells were exposed for 24 and 48 h. No cytotoxicity was observed for B16 cells through neutral red, MTT, trypan blue, and crystal violet assays at concentrations from 0.01 to 10 ng mL-1. Likewise, the nanoparticles did not interfere with drug-efflux activity, cell migration, cell cycle, and colony formation. Slight toxicity was observed for B16F10 exposed to 100 ng mL-1, with a decreased number of viable and attached cells, indicating differential sensitivity of B16F1 and B16F10 cells to the nanoparticles. Furthermore, colony size dispersion decreased for both B16 cell sub-lines. Therefore, there is no evidence that the tested concentrations of AuNP and AgNP can render B16 cells more aggressive and malignant, which is important since both nanoparticles are already largely used in nanotechnological products. Considering studies that have showed the hormesis effect of nanoparticles at low concentrations, which could protect cancer cells against chemotherapy, further investigation is advised.


Subject(s)
Gold/toxicity , Melanoma, Experimental/pathology , Metal Nanoparticles/toxicity , Silver/toxicity , Theranostic Nanomedicine , Animals , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Hormesis , Mice , Risk Assessment , Time Factors
10.
Chemosphere ; 260: 127556, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32682134

ABSTRACT

Polybrominated diphenyl ethers (PBDEs) are brominated, persistent and bioaccumulative flame retardants widely used in the manufacture of plastic products. Decabromodiphenyl ether (BDE-209) is the most prevalent PBDE in the atmosphere and found in human blood, breast milk and umbilical cord. In vitro studies showed that BDE-209 interferes with murine melanoma cells (B16F10), modulating cell death rates, proliferation and migration, important events for cancer progression. In order to evaluate if BDE-209 modulates metastasis formation in murine models, C57BL/6 mice were exposed to BDE-209 (0.08, 0.8 and 8 µg/kg) via gavage (5-day intervals for 45 days) (9 doses in total). Then, mice were inoculated with melanoma cells (B16-F10) at caudal vein receiving 4 additional doses of BDE-209. At 20th day post-cell inoculation, blood, lung, liver, kidney and brain were sampled for hematological, biochemical and morphological analyses. The slightly higher levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the blood and pro-oxidant state in the liver of BDE-exposed mice indicated liver damage. Although the in vivo approach is for metastasis formation in the lung, they were unexpectedly observed in non-target organs (liver, brain, kidney and gonads). The similarity test showed high proximity among individuals from the control and a dissimilarity index between the control and exposed groups. The present data corroborate the known hepatotoxicity of BDE-209 to mice (C57BL/6) and demonstrate for the first time the increase of metastatic dissemination of B16F10 cells in vivo due to previous and continuous BDE-209 exposure, revealing possible implications of this organic compound with melanoma malignancy related traits.


Subject(s)
Halogenated Diphenyl Ethers/pharmacology , Melanoma/pathology , Mice, Inbred C57BL , Neoplasm Metastasis/pathology , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Flame Retardants/pharmacology , Halogenated Diphenyl Ethers/toxicity , Heterografts , Humans , Liver/drug effects , Liver/pathology , Melanoma, Experimental , Mice
11.
Ecotoxicol Environ Saf ; 187: 109815, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31677565

ABSTRACT

The 2,4,6-tribromophenol (TBP) is an environmental persistent pollutant widely used as flame retardant, antimicrobial and insecticide agent in wood preservation and plastic production. Currently, TBP is found in environmental compartments such as soil, freshwater, groundwater, sewage sludge and domestic dust, but the effects to biota and the risk of exposure to aquatic vertebrates are still scarce. In the present study, Rhamdia quelen fish embryos (8 h post-fertilization - hpf) were exposed to 0.3 and 3.0 µg L-1 of TBP until 96 hpf. Biochemical biomarkers, hatching, survival and larvae/embryo malformations were evaluated after exposure. Additionally, a mathematical model was proposed to evaluate the effects along further generations. The results showed that TBP decreased the survival level but did not cause significant difference in the hatching rates. After 72 and 96 hpf, individuals from the highest tested concentration group showed more severe malformations than individuals from control and the lower concentrations groups. The deformities were concentrated on the embryos facial region where the sensorial structures related to fish behavior are present. The biochemical biomarkers revealed both oxidative stress and neurotoxicity signs after exposure to the contaminant, while the application of the mathematical model showed a decrease of population in both tested TBP concentrations. In conclusion, the current results demonstrated that TBP is toxic to R. quelen embryos and represents a risk to population after early life stage exposure.


Subject(s)
Catfishes , Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Larva/drug effects , Phenols/toxicity , Water Pollutants, Chemical/toxicity , Animals , Behavior, Animal/drug effects , Catfishes/abnormalities , Embryo, Nonmammalian/abnormalities , Female , Larva/growth & development , Male , Models, Theoretical , South America , Survival Analysis
12.
Acta cir. bras. ; 35(11): e351103, 2020. ilus, tab, graf
Article in English | VETINDEX | ID: vti-30326

ABSTRACT

Purpose To evaluate renal histological changes by stereology and morphometry and analyze the main markers of oxidative stress in rats undergoing natural aging. Methods Seventy two Wistar rats were divided into six groups of 12 rats each, which were euthanized at 3, 6, 9, 12, 18, and 24 months of age. Right kidney was stereologically and morphometrically analyzed to calculate the volumetric density (Vv[glom]), numerical density (Nv[glom]) and glomerular volume (Vol[glom]). Left kidney was used to determine the levels of nonprotein thiols, lipid peroxidation, and protein carbonylation, as well as the activities of superoxide-dismutase and catalase enzymes. Results Both Vv[glom] and Nv[glom] values showed gradual decreases between groups. Activity of superoxide-dismutase was elevated at 24 months of age, and the levels of nonprotein thiols were higher in older animals. Greater catalase activity and protein carbonylation were observed in animals between 6 and 12 months of age but lessened in older rats. Lipid peroxidation decreased in the older groups. Conclusions Morphometric and stereological analyses revealed a gradual decrease in the volume and density of renal glomeruli during aging, as well as kidney atrophy. These findings related to oxidative stress clarify many changes occurring in kidney tissues during senescence in rats.(AU)


Subject(s)
Animals , Rats , Oxidative Stress , Kidney Diseases/veterinary , Aging
13.
Acta cir. bras ; Acta cir. bras;35(11): e351103, 2020. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1456240

ABSTRACT

Purpose To evaluate renal histological changes by stereology and morphometry and analyze the main markers of oxidative stress in rats undergoing natural aging. Methods Seventy two Wistar rats were divided into six groups of 12 rats each, which were euthanized at 3, 6, 9, 12, 18, and 24 months of age. Right kidney was stereologically and morphometrically analyzed to calculate the volumetric density (Vv[glom]), numerical density (Nv[glom]) and glomerular volume (Vol[glom]). Left kidney was used to determine the levels of nonprotein thiols, lipid peroxidation, and protein carbonylation, as well as the activities of superoxide-dismutase and catalase enzymes. Results Both Vv[glom] and Nv[glom] values showed gradual decreases between groups. Activity of superoxide-dismutase was elevated at 24 months of age, and the levels of nonprotein thiols were higher in older animals. Greater catalase activity and protein carbonylation were observed in animals between 6 and 12 months of age but lessened in older rats. Lipid peroxidation decreased in the older groups. Conclusions Morphometric and stereological analyses revealed a gradual decrease in the volume and density of renal glomeruli during aging, as well as kidney atrophy. These findings related to oxidative stress clarify many changes occurring in kidney tissues during senescence in rats.


Subject(s)
Animals , Rats , Aging , Oxidative Stress , Kidney Diseases/veterinary
14.
J Toxicol Environ Health A ; 81(14): 620-632, 2018.
Article in English | MEDLINE | ID: mdl-29764335

ABSTRACT

Many tropical freshwater ecosystems are impacted by cyanobacteria blooms increasing the risk of cyanotoxins exposure to aquatic organisms while human populations may be exposed by eating fish, drinking water, or dermal swimming. However, few toxicological data are available on the influence of cyanobacteria blooms in particular, cylindrospermopsin (CYN) on Brazilian neotropical fish. A number of studies demonstrated the ability of CYN to bioaccumulate in freshwater organisms and consequently enter the human food chain. The aim of the current study was to examine the effects of CYN following single intraperitoneal injection (50 µg/kg) of purified CYN (CYNp) or aqueous extract of CYN-producing cyanobacteria extract (CYNex) after 7 or 14 days. Biomarkers such as histopathology (liver), oxidative stress (liver and brain), and acetylcholinesterase (AChE) activity (muscle and brain) were utilized in order to assess the influence of CYN on Hoplias malabaricus. In terms of AChE activity, administration of CYNex and CYNp both muscle and brains were used as target tissues. In brain an increase of glutathione S-transferase (GST) activity and lipid peroxidation (LPO) levels was noted suggesting an imbalance in redox cycling. The majority of biomarkers did not present significant alterations in liver, but an elevation in superoxide dismutase (SOD) and glucose 6 phosphate dehydrogenase (G6PDH) activities was found. Different profiles of GST activity were observed in both studied groups (CYNex and CYNp) while LPO (CYNex and CYNp) and protein carbonylation (PCO) (CYNp) levels increased after exposure to CYN. The incidence of necrosis, melanomacrophages centers, and free melanomacrophages were detected as evidence of cell death and immune responses. Nonprotein thiols (NPT) levels were not markedly affected in both exposed groups. Data demonstrated that in vivo exposure to CYN produced biochemical and morphological disturbances in liver and brain of H. malabaricus.


Subject(s)
Acetylcholinesterase/metabolism , Bacterial Toxins/adverse effects , Brain/drug effects , Characiformes/metabolism , Liver/drug effects , Muscles/drug effects , Uracil/analogs & derivatives , Alkaloids , Animals , Biomarkers/metabolism , Brain/metabolism , Cyanobacteria Toxins , Injections, Intraperitoneal , Liver/metabolism , Liver/pathology , Muscles/metabolism , Oxidative Stress , Time Factors , Uracil/adverse effects
15.
Ecotoxicol Environ Saf ; 149: 173-181, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29175343

ABSTRACT

Aquatic organisms are usually exposed to a mixture of xenobiotics that may exert a large effect even in low concentrations, and when information is obtained exclusively from chemical analyses the prediction of the deleterious effects is potentially hindered. Therefore, the application of complementary monitoring methods is a priority. Here, in addition to chemical analyses, an active biomonitoring study using multiple biomarker responses in Nile tilapia Oreochromis niloticus was conducted to assess the effects of a contamination gradient along four reservoirs in Iguaçu River. Chemical analysis in the muscle showed high levels of metals in fish from the reservoir closest to an industrialized and environmentally degraded area, however fish exposed to all studied reservoirs showed hepatic alterations (necrosis and inflammatory processes). Also, significant variations of biochemical biomarkers were observed with no clear indication of contamination gradient, since an indicative of higher impact was found in an intermediary reservoir, including high concentrations of biliary polycyclic aromatic hydrocarbons (PAHs). However, nuclear morphological alterations (NMA) were less frequent at the same reservoir. Thus, the multi-biomarker approach allied to active biomonitoring is a practical and important tool to assess deleterious effects of contamination in freshwater, providing data for monitoring and conservation protocols.


Subject(s)
Cichlids/metabolism , Environmental Monitoring/methods , Fresh Water/chemistry , Metals, Heavy/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Animals , Biomarkers/metabolism , Brazil , Rivers/chemistry
16.
Environ Sci Pollut Res Int ; 24(19): 16228-16240, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28540546

ABSTRACT

In the current study, water quality of five river sites in Parana River basin (Brazil), utilized for public water supply, was assessed through a set of biomarkers in fish Astyanax spp. Population growth and inadequate use of land are challenges to the preservation of biodiversity and resources such as water. Some physicochemical parameters as well as somatic indexes, gills and liver histopathology, genotoxicity, and biochemical biomarkers were evaluated. The highest gonadosomatic index (GSI) and antioxidant parameters (catalase and glutathione S-transferase activities, non-protein thiols), as well as the lowest damage to biomolecules (lipid peroxidation, protein carbonylation, DNA damage) were observed in site 0 (Piava River), which is located at an environmental protected area. Site 1, located in the same river, but downstream site 0 and outside the protection area, presents some level of impact. Fish from site 2 (Antas River), which lack of riparian forest and suffer from silting, presented the highest micronucleus incidence and no melanomacrophages. Differently, individuals from site 3 (Xambrê River) and site 4 (Pinhalzinho River) which receive surface runoff from Umuarama city, urban and industrial sewage, have the highest incidences of liver and gill histopathological alterations, including neoplasia, which indicated the worst health conditions of all sites. In particular, site 4 had high levels of total nitrogen and ammonia, high turbidity, and very low oxygen levels, which indicate important chemical impact. Comparison of the biomarkers in fish allowed classification of the five sites in terms of environmental impact and revealed that sites 3 and 4 had particular poor water quality.


Subject(s)
Biomarkers , Environmental Monitoring/methods , Fishes , Risk Assessment , Animals , Brazil , Cities , Humans , Rivers , Water Pollutants, Chemical
17.
Stem Cell Res ; 17(2): 413-421, 2016 09.
Article in English | MEDLINE | ID: mdl-27653462

ABSTRACT

The understanding of metabolism during cell proliferation and commitment provides a greater insight into the basic biology of cells, allowing future applications. Here we evaluated the energy and oxidative changes during the early adipogenic differentiation of human adipose tissue-derived stromal cells (hASCs). hASCs were maintained under differentiation conditions during 3 and 7days. Oxygen consumption, mitochondrial mass and membrane potential, reactive oxygen species (ROS) generation, superoxide dismutase (SOD) and catalase activities, non-protein thiols (NPT) concentration and lipid peroxidation were analyzed. We observed that 7days of adipogenic induction are required to stimulate cells to consume more oxygen and increase mitochondrial activity, indicating organelle maturation and a transition from glycolytic to oxidative energy metabolism. ROS production was only increased after 3days and may be involved in the differentiation commitment. ROS source was not only the mitochondria and we suggest that NOX proteins are related to ROS generation and therefore adipogenic commitment. ROS production did not change after 7days, but an increased activity of catalase and NPT concentration as well as a decreased lipid peroxidation were observed. Thus, a short period of differentiation induction is able to change the energetic and oxidative metabolic profile of hASCs and stimulate cytoprotection processes.


Subject(s)
Cell Differentiation/physiology , Mesenchymal Stem Cells/metabolism , Adipogenesis , Adipose Tissue/cytology , Adipose Tissue/metabolism , Catalase/metabolism , Cells, Cultured , Glycolysis , Humans , Lipid Peroxidation , Membrane Potential, Mitochondrial , Mesenchymal Stem Cells/cytology , Microscopy, Fluorescence , Mitochondria/metabolism , NADPH Oxidases/antagonists & inhibitors , NADPH Oxidases/metabolism , Oxidative Phosphorylation , Oxygen Consumption , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
18.
Toxicol Mech Methods ; 26(7): 554-563, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27494769

ABSTRACT

Human hepatoma cells (HepG2) were exposed to purified cylindrospermopsin (CYN), a potent toxicant for eukaryotic cells produced by several cyanobacteria. Exposure to 10 µg l-1 of CYN for 24 h resulted in alteration of expression of 48 proteins, from which 26 were identified through mass spectrometry. Exposure to 100 µg l-1 of CYN for 24 h affected nuclear area and actin filaments intensity, which can be associated with cell proliferation and toxicity. The proteins are implicated in different biological processes: protein folding, xenobiotic efflux, antioxidant defense, energy metabolism and cell anabolism, cell signaling, tumorigenic potential, and cytoskeleton structure. Protein profile indicates that CYN exposure may lead to alteration of glucose metabolism that can be associated with the supply of useful energy to cells respond to chemical stress and proliferate. Increase of G protein-coupled receptors (GPCRs), heterogeneous nuclear ribonucleoproteins (hnRNP), and reactive oxygen species (ROS) levels observed in HepG2 cells can associate with cell proliferation and resistance. Increase of MRP3 and glutathione peroxidase can protect cells against some chemicals and ROS. CYN exposure also led to alteration of the expression of cytoskeleton proteins, which may be associated with cell proliferation and toxicity.


Subject(s)
Bacterial Toxins/toxicity , Protein Biosynthesis/drug effects , Proteome/metabolism , Uracil/analogs & derivatives , Alkaloids , Antioxidants/metabolism , Cell Culture Techniques , Cell Proliferation/drug effects , Cyanobacteria Toxins , Cytoskeletal Proteins/biosynthesis , Electrophoresis, Gel, Two-Dimensional , Energy Metabolism/drug effects , Hep G2 Cells , Humans , Microscopy, Fluorescence , Protein Folding , Proteomics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Uracil/toxicity
19.
Toxicol Mech Methods ; 26(4): 251-9, 2016 May.
Article in English | MEDLINE | ID: mdl-27001549

ABSTRACT

Nanotechnology occupies a prominent space in economy and science due to the beneficial properties of nanomaterials. However, nanoparticles may pose risks to living organisms due to their adsorption and pro-oxidative properties. The aim of the current study was to investigate the effects of polymer-coated silver nanoparticles (AgNPs) and organochlorine pesticides (OCPs), as well as their combined effects on mouse peritoneal macrophages. Macrophages were isolated and exposed to three concentrations of AgNPs (groups: N1 = 30, N2 = 300 and N3 = 3000 ng.ml(-1)), two concentrations of OCPs (groups: P1 = 30 and P2 = 300 ng.ml(-1)) and the six possible combinations of these two contaminants for 24 h. AgNPs had irregular shape, Feret diameter of 8.7 ± 7.5 nm and zeta potential of -28.7 ± 3.9 mV in water and -10.7 ± 1.04 mV in culture medium. OCP mixtures and the lower concentrations of AgNPs had no detectable effects on cell parameters, but the highest AgNPs concentration showed high toxicity (trypan blue and MTT assays) resulting in morphological changes, increase of nitric oxide levels and phagocytic index. Foremost, the association of N3 and P2 led to distinct effects from those observed under single exposure.


Subject(s)
Hydrocarbons, Chlorinated/toxicity , Macrophages, Peritoneal/drug effects , Metal Nanoparticles/toxicity , Pesticides/toxicity , Silver/toxicity , Animals , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Interactions , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/pathology , Male , Metal Nanoparticles/chemistry , Mice , Microscopy, Electron, Scanning , Nitric Oxide/metabolism , Phagocytosis/drug effects , Reactive Oxygen Species/metabolism , Silver/chemistry
20.
Environ Sci Pollut Res Int ; 23(10): 9625-39, 2016 May.
Article in English | MEDLINE | ID: mdl-26846238

ABSTRACT

The knowledge concerning associations between chronic chemical exposure and many disorders with complex etiology involving gene-environment interactions is increasing, and new methods must be developed to improve water quality monitoring. The complexity of chemical mixtures in polluted aquatic environments makes the evaluation of toxic potential in those sites difficult, but the use of biomarkers and bioindicators has been recognized as a reliable tool to assess risk of exposure to biota and also the human population. In order to evaluate the use of fish and biomarkers to assess toxic potential and bioavailability of chemicals in human-related hydric resources, an in situ experiment was accomplished in two water reservoirs designated for human supply, which were previously evaluated by the local environmental regulatory agency through a set of physical, chemical, and classical biological parameters. Molecular, biochemical, and morphological biomarkers were performed in caged Oreochromis niloticus kept for 6 months in the studied reservoirs to assess potentially useful biomarkers to evaluate the quality of water for human supply. Chemical analysis of toxic metals in liver and muscle and polycyclic aromatic hydrocarbons (PAHs) in bile was considered to assess the bioavailability of pollutants and highlight human activity impact. The reservoir previously classified by a governmental agency as less impacted presented more risk of exposure to biota. These results were supported by chemical analysis, vitellogenin expression, histopathological findings (gonads, liver, and gills), as well as indicators of neurotoxic effects and oxidative stress in liver. The inclusion of some biomarkers as parameters in regulatory monitoring programs in reservoirs designated for human supply is strongly suggested to evaluate the risks of exposure to the human population. Thus, a revision of the traditional biological and physicochemical analysis utilized to establish the conditions of water quality is necessary.


Subject(s)
Biomarkers/analysis , Environmental Exposure/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Animals , Biomarkers/metabolism , Brazil , Cichlids/metabolism , Humans , Polycyclic Aromatic Hydrocarbons/metabolism , Risk , Water Pollutants, Chemical/metabolism , Water Quality , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL