Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 19(11): e1011589, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37934791

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , SARS-CoV-2/genetics , Virulence , Machine Learning
2.
Viruses ; 15(8)2023 08 19.
Article in English | MEDLINE | ID: mdl-37632111

ABSTRACT

Although domestic cats are susceptible to infection with SARS-CoV-2, the role of the virus in causing feline disease is less well defined. We conducted a large-scale study to identify SARS-CoV-2 infections in UK pet cats, using active and passive surveillance. Remnant feline respiratory swab samples, submitted for other pathogen testing between May 2021 and February 2023, were screened using RT-qPCR. In addition, we appealed to veterinarians for swab samples from cats suspected of having clinical SARS-CoV-2 infections. Bespoke testing for SARS-CoV-2 neutralising antibodies was also performed, on request, in suspected cases. One RT-qPCR-positive cat was identified by active surveillance (1/549, 0.18%), during the Delta wave (1/175, 0.57%). Passive surveillance detected one cat infected with the Alpha variant, and two of ten cats tested RT-qPCR-positive during the Delta wave. No cats tested RT-qPCR-positive after the emergence of Omicron BA.1 and its descendants although 374 were tested by active and eleven by passive surveillance. We describe four cases of SARS-CoV-2 infection in pet cats, identified by RT-qPCR and/or serology, that presented with a range of clinical signs, as well as their SARS-CoV-2 genome sequences. These cases demonstrate that, although uncommon in cats, a variety of clinical signs can occur.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cats , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/veterinary , Antibodies, Viral , United Kingdom/epidemiology
3.
J Infect ; 83(6): 693-700, 2021 12.
Article in English | MEDLINE | ID: mdl-34610391

ABSTRACT

OBJECTIVES: Recently emerging SARS-CoV-2 variants have been associated with an increased rate of transmission within the community. We sought to determine whether this also resulted in increased transmission within hospitals. METHODS: We collected viral sequences and epidemiological data of patients with community and healthcare associated SARS-CoV-2 infections, sampled from 16th November 2020 to 10th January 2021, from nine hospitals participating in the COG-UK HOCI study. Outbreaks were identified using ward information, lineage and pairwise genetic differences between viral sequences. RESULTS: Mixed effects logistic regression analysis of 4184 sequences showed healthcare-acquired infections were no more likely to be identified as the Alpha variant than community acquired infections. Nosocomial outbreaks were investigated based on overlapping ward stay and SARS-CoV-2 genome sequence similarity. There was no significant difference in the number of patients involved in outbreaks caused by the Alpha variant compared to outbreaks caused by other lineages. CONCLUSIONS: We find no evidence to support it causing more nosocomial transmission than previous lineages. This suggests that the stringent infection prevention measures already in place in UK hospitals contained the spread of the Alpha variant as effectively as other less transmissible lineages, providing reassurance of their efficacy against emerging variants of concern.


Subject(s)
COVID-19 , Cross Infection , Cross Infection/epidemiology , Hospitals , Humans , SARS-CoV-2 , United Kingdom/epidemiology
4.
J Infect ; 83(1): 96-103, 2021 07.
Article in English | MEDLINE | ID: mdl-33895226

ABSTRACT

OBJECTIVES: Patients requiring haemodialysis are at increased risk of serious illness with SARS-CoV-2 infection. To improve the understanding of transmission risks in six Scottish renal dialysis units, we utilised the rapid whole-genome sequencing data generated by the COG-UK consortium. METHODS: We combined geographical, temporal and genomic sequence data from the community and hospital to estimate the probability of infection originating from within the dialysis unit, the hospital or the community using Bayesian statistical modelling and compared these results to the details of epidemiological investigations. RESULTS: Of 671 patients, 60 (8.9%) became infected with SARS-CoV-2, of whom 16 (27%) died. Within-unit and community transmission were both evident and an instance of transmission from the wider hospital setting was also demonstrated. CONCLUSIONS: Near-real-time SARS-CoV-2 sequencing data can facilitate tailored infection prevention and control measures, which can be targeted at reducing risk in these settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Bayes Theorem , Hospitals , Humans , Molecular Epidemiology , Renal Dialysis/adverse effects
5.
Genome Res ; 31(4): 645-658, 2021 04.
Article in English | MEDLINE | ID: mdl-33722935

ABSTRACT

We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6 ACE2+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.


Subject(s)
Genome, Viral , RNA, Viral/genetics , SARS-CoV-2/genetics , Sequence Analysis, RNA/methods , Animals , Base Sequence , Chlorocebus aethiops , Humans , Limit of Detection , Vero Cells
6.
Nat Commun ; 11(1): 5951, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230120

ABSTRACT

Rabies is a viral zoonosis transmitted by vampire bats across Latin America. Substantial public health and agricultural burdens remain, despite decades of bats culls and livestock vaccinations. Virally vectored vaccines that spread autonomously through bat populations are a theoretically appealing solution to managing rabies in its reservoir host. We investigate the biological and epidemiological suitability of a vampire bat betaherpesvirus (DrBHV) to act as a vaccine vector. In 25 sites across Peru with serological and/or molecular evidence of rabies circulation, DrBHV infects 80-100% of bats, suggesting potential for high population-level vaccine coverage. Phylogenetic analysis reveals host specificity within neotropical bats, limiting risks to non-target species. Finally, deep sequencing illustrates DrBHV super-infections in individual bats, implying that DrBHV-vectored vaccines might invade despite the highly prevalent wild-type virus. These results indicate DrBHV as a promising candidate vector for a transmissible rabies vaccine, and provide a framework to discover and evaluate candidate viral vectors for vaccines against bat-borne zoonoses.


Subject(s)
Betaherpesvirinae/physiology , Chiroptera/virology , Rabies/epidemiology , Rabies/veterinary , Animals , Betaherpesvirinae/classification , Betaherpesvirinae/genetics , Biological Coevolution , Cattle , Chiroptera/classification , Genome, Viral/genetics , Herpesviridae Infections/epidemiology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Host Specificity , Mammals/classification , Mammals/virology , Peru/epidemiology , Phylogeny , Rabies/prevention & control , Rabies/transmission , Rabies virus/immunology , Rabies virus/physiology , Seroepidemiologic Studies , Superinfection/veterinary , Superinfection/virology
7.
PLoS Negl Trop Dis ; 14(9): e0008133, 2020 09.
Article in English | MEDLINE | ID: mdl-32925939

ABSTRACT

The emergence and spread of tick-borne arboviruses pose an increased challenge to human and animal health. In Europe this is demonstrated by the increasingly wide distribution of tick-borne encephalitis virus (TBEV, Flavivirus, Flaviviridae), which has recently been found in the United Kingdom (UK). However, much less is known about other tick-borne flaviviruses (TBFV), such as the closely related louping ill virus (LIV), an animal pathogen which is endemic to the UK and Ireland, but which has been detected in other parts of Europe including Scandinavia and Russia. The emergence and potential spatial overlap of these viruses necessitates improved understanding of LIV genomic diversity, geographic spread and evolutionary history. We sequenced a virus archive composed of 22 LIV isolates which had been sampled throughout the UK over a period of over 80 years. Combining this dataset with published virus sequences, we detected no sign of recombination and found low diversity and limited evidence for positive selection in the LIV genome. Phylogenetic analysis provided evidence of geographic clustering as well as long-distance movement, including movement events that appear recent. However, despite genomic data and an 80-year time span, we found that the data contained insufficient temporal signal to reliably estimate a molecular clock rate for LIV. Additional analyses revealed that this also applied to TBEV, albeit to a lesser extent, pointing to a general problem with phylogenetic dating for TBFV. The 22 LIV genomes generated during this study provide a more reliable LIV phylogeny, improving our knowledge of the evolution of tick-borne flaviviruses. Our inability to estimate a molecular clock rate for both LIV and TBEV suggests that temporal calibration of tick-borne flavivirus evolution should be interpreted with caution and highlight a unique aspect of these viruses which may be explained by their reliance on tick vectors.


Subject(s)
Encephalitis Viruses, Tick-Borne/genetics , Evolution, Molecular , Genome, Viral , Animals , Cell Line , Cricetinae , Encephalitis Viruses, Tick-Borne/classification , Encephalitis, Tick-Borne/virology , Genetics, Population , Metagenomics , Phylogeny , Sequence Analysis, RNA , Sheep , United Kingdom
8.
PLoS Biol ; 18(4): e3000673, 2020 04.
Article in English | MEDLINE | ID: mdl-32343693

ABSTRACT

The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.


Subject(s)
Bluetongue virus/physiology , Bluetongue/virology , Genome, Viral , Animals , Biological Evolution , Bluetongue/epidemiology , Bluetongue virus/genetics , Disease Outbreaks , Europe/epidemiology , France , Livestock/virology , Mutation , Phylogeny
9.
J Infect ; 79(4): 383-388, 2019 10.
Article in English | MEDLINE | ID: mdl-31398374

ABSTRACT

OBJECTIVES: Travel-associated infections are challenging to diagnose because of the broad spectrum of potential aetiologies. As a proof-of-principle study, we used MNGS to identify viral pathogens in clinical samples from returning travellers in a single center to explore its suitability as a diagnostic tool. METHODS: Plasma samples from 40 returning travellers presenting with a fever of ≥38°C were sequenced using MNGS on the Illumina MiSeq platform and compared with standard-of-care diagnostic assays. RESULTS: In total, 11/40 patients were diagnosed with a viral infection. Standard of care diagnostics revealed 5 viral infections using plasma samples; dengue virus 1 (n = 2), hepatitis E (n = 1), Ebola virus (n = 1) and hepatitis A (n = 1), all of which were detected by MNGS. Three additional patients with Chikungunya virus (n = 2) and mumps virus were diagnosed by MNGS only. Respiratory infections detected by nasal/throat swabs only were not detected by MNGS of plasma. One patient had infection with malaria and mumps virus during the same admission. CONCLUSIONS: MNGS analysis of plasma samples improves the sensitivity of diagnosis of viral infections and has potential as an all-in-one diagnostic test. It can be used to identify infections that have not been considered by the treating physician, co-infections and new or emerging pathogens. SUMMARY: Next generation sequencing (NGS) has potential as an all-in-one diagnostic test. In this study we used NGS to diagnose returning travellers with acute febrile illness in the UK, highlighting cases where the diagnosis was missed using standard methods.


Subject(s)
Fever/virology , High-Throughput Nucleotide Sequencing/methods , Respiratory Tract Infections/diagnosis , Travel-Related Illness , Virus Diseases/diagnosis , Adult , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Humans , Metagenomics , Parasitic Diseases/diagnosis , Parasitic Diseases/parasitology , Proof of Concept Study , RNA, Viral/genetics , Respiratory Tract Infections/blood , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Retrospective Studies , Sensitivity and Specificity , Travel/statistics & numerical data , Virus Diseases/blood , Viruses/genetics , Viruses/pathogenicity
10.
PLoS Pathog ; 14(10): e1007307, 2018 10.
Article in English | MEDLINE | ID: mdl-30308076

ABSTRACT

As antimicrobial signalling molecules, type III or lambda interferons (IFNλs) are critical for defence against infection by diverse pathogens, including bacteria, fungi and viruses. Counter-intuitively, expression of one member of the family, IFNλ4, is associated with decreased clearance of hepatitis C virus (HCV) in the human population; by contrast, a natural frameshift mutation that abrogates IFNλ4 production improves HCV clearance. To further understand how genetic variation between and within species affects IFNλ4 function, we screened a panel of all known extant coding variants of human IFNλ4 for their antiviral potential and identify three that substantially affect activity: P70S, L79F and K154E. The most notable variant was K154E, which was found in African Congo rainforest 'Pygmy' hunter-gatherers. K154E greatly enhanced in vitro activity in a range of antiviral (HCV, Zika virus, influenza virus and encephalomyocarditis virus) and gene expression assays. Remarkably, E154 is the ancestral residue in mammalian IFNλ4s and is extremely well conserved, yet K154 has been fixed throughout evolution of the hominid genus Homo, including Neanderthals. Compared to chimpanzee IFNλ4, the human orthologue had reduced activity due to amino acid K154. Comparison of published gene expression data from humans and chimpanzees showed that this difference in activity between K154 and E154 in IFNλ4 correlates with differences in antiviral gene expression in vivo during HCV infection. Mechanistically, our data show that the human-specific K154 negatively affects IFNλ4 activity through a novel means by reducing its secretion and potency. We thus demonstrate that attenuated activity of IFNλ4 is conserved among humans and postulate that differences in IFNλ4 activity between species contribute to distinct host-specific responses to-and outcomes of-infection, such as HCV infection. The driver of reduced IFNλ4 antiviral activity in humans remains unknown but likely arose between 6 million and 360,000 years ago in Africa.


Subject(s)
Antiviral Agents/therapeutic use , Cardiovirus Infections/drug therapy , Hepatitis C/drug therapy , Interleukins/genetics , Polymorphism, Single Nucleotide , Zika Virus Infection/drug therapy , Animals , Biological Evolution , Cardiovirus Infections/genetics , Cardiovirus Infections/virology , Cells, Cultured , Encephalomyocarditis virus/drug effects , Encephalomyocarditis virus/isolation & purification , Gene Expression Regulation , Hepacivirus/drug effects , Hepacivirus/isolation & purification , Hepatitis C/genetics , Hepatitis C/virology , Humans , Pan troglodytes , Species Specificity , Zika Virus/drug effects , Zika Virus/isolation & purification , Zika Virus Infection/genetics , Zika Virus Infection/virology
11.
Liver Int ; 35(10): 2256-64, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25800823

ABSTRACT

BACKGROUND: Chronic hepatitis C virus (HCV) infection of the liver with either genotype 1 or genotype 3 gives rise to distinct pathologies, and the two viral genotypes respond differently to antiviral therapy. METHODS: To understand these clinical differences, we compared gene transcription profiles in liver biopsies from patients infected with either gt1 or gt3, and uninfected controls. RESULTS: Gt1-infected biopsies displayed elevated levels of transcripts regulated by type I and type III interferons (IFN), including genes that predict response to IFN-α therapy. In contrast, genes controlled by IFN-γ were induced in gt3-infected biopsies. Moreover, IFN-γ levels were higher in gt3-infected biopsies. Analysis of hepatocyte-derived cell lines confirmed that the genes upregulated in gt3 infection were preferentially induced by IFN-γ. The transcriptional profile of gt3 infection was unaffected by IFNL4 polymorphisms, providing a rationale for the reduced predictive power of IFNL genotyping in gt3-infected patients. CONCLUSIONS: The interactions between HCV genotypes 1 and 3 and hepatocytes are distinct. These unique interactions provide avenues to explore the biological mechanisms that drive viral genotype-specific differences in disease progression and treatment response. A greater understanding of the distinct host-pathogen interactions of the different HCV genotypes is required to facilitate optimal management of HCV infection.


Subject(s)
Hepatitis C, Chronic/genetics , Hepatitis C/genetics , Interleukins/genetics , Liver/pathology , Adult , Cell Line , Female , Genotype , Host-Pathogen Interactions , Humans , Interferon-gamma/metabolism , Male , Middle Aged , Polymorphism, Genetic , Transcription, Genetic , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...