Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immun Ageing ; 20(1): 61, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964387

ABSTRACT

Aging is a biological event that influences many organs and systems. Both sarcopenia and frailty syndrome refer to geriatric conditions with overlapping phenotypes. Many mechanisms are involved in the aging process such as DNA methylation telomeres which are susceptible to oxidative stress, and inflammations which result in telomere shortening, leading to chromosomal instability. The study aimed to determine the associations between these processes, frailty and sarcopenia syndrome. Global DNA methylation was analyzed using the ELISA method. Telomere length was analyzed using qPCR. Total oxidative status (TOS) was analyzed using a colorimetric method. The present study revealed that the main factor affecting methylation, telomeres length and level of total oxidant stress was age.

2.
Int J Mol Sci ; 24(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895173

ABSTRACT

Mixed connective tissue disease (MCTD) is a very rare disorder that belongs in the rare and clinically multifactorial groups of diseases. The pathogenesis of MCTD is still unclear. The best understood epigenetic alteration is DNA methylation whose role is to regulate gene expression. In the literature, there are ever-increasing assumptions that DNA methylation can be one of the possible reasons for the development of Autoimmune Connective Tissue Diseases (ACTDs) such as systemic sclerosis (SSc) and systemic lupus erythematosus (SLE). The aim of this study was to define the global DNA methylation changes between MCTD and other ACTDs patients in whole blood samples. The study included 54 MCTD patients, 43 SSc patients, 45 SLE patients, and 43 healthy donors (HC). The global DNA methylation level was measured by ELISA. Although the global DNA methylation was not significantly different between MCTD and control, we observed that hypomethylation distinguishes the MCTD patients from the SSc and SLE patients. The present analysis revealed a statistically significant difference of global methylation between SLE and MCTD (p < 0.001), SLE and HC (p = 0.008), SSc and MCTD (p ≤ 0.001), and SSc and HC (p < 0.001), but neither between MCTD and HC (p = 0.09) nor SSc and SLE (p = 0.08). The highest % of global methylation (median, IQR) has been observed in the group of patients with SLE [0.73 (0.43, 1.22] and SSc [0,91 (0.59, 1.50)], whereas in the MCTD [0.29 (0.20, 0.54)], patients and healthy subjects [0.51 (0.24, 0.70)] were comparable. In addition, our study provided evidence of different levels of global DNA methylation between the SSc subtypes (p = 0.01). Our study showed that patients with limited SSc had a significantly higher global methylation level when compared to diffuse SSc. Our data has shown that the level of global DNA methylation may not be a good diagnostic marker to distinguish MCTD from other ACTDs. Our research provides the groundwork for a more detailed examination of the significance of global DNA methylation as a distinguishing factor in patients with MCTD compared to other ACTDs patients.


Subject(s)
Autoimmune Diseases , Connective Tissue Diseases , Lupus Erythematosus, Systemic , Mixed Connective Tissue Disease , Scleroderma, Systemic , Humans , Mixed Connective Tissue Disease/diagnosis , Mixed Connective Tissue Disease/genetics , Autoimmune Diseases/genetics , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/genetics , Connective Tissue Diseases/diagnosis , Connective Tissue Diseases/genetics , Scleroderma, Systemic/diagnosis , Scleroderma, Systemic/genetics , DNA Methylation
SELECTION OF CITATIONS
SEARCH DETAIL
...