Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38785987

ABSTRACT

Endometriosis is characterized by the growth of endometrial-like tissue outside the uterus, and it is associated with alterations in the expression of hormone receptors and inflammation. Estetrol (E4) is a weak estrogen that recently has been approved for contraception. We evaluated the effect of E4 on the growth of endometriotic-like lesions and the expression of TNF-α, estrogen receptors (ERs), and progesterone receptors (PRs) in an in vivo murine model. Endometriosis was induced surgically in female C57BL/6 mice. E4 was delivered via Alzet pump (3 mg/kg/day) from the 15th postoperative day for 4 weeks. E4 significantly reduced the volume (p < 0.001) and weight (p < 0.05) of ectopic lesions. Histologically, E4 did not affect cell proliferation (PCNA immunohistochemistry) but it did increase cell apoptosis (TUNEL assay) (p < 0.05). Furthermore, it modulated oxidative stress (SOD, CAT, and GPX activity, p < 0.05) and increased lipid peroxidation (TBARS/MDA, p < 0.01). Molecular analysis showed mRNA (RT-qPCR) and protein (ELISA) expression of TNF-α decreased (p < 0.05) and mRNA expression of Esr2 reduced (p < 0.05), in contrast with the increased expression of Esr1 (p < 0.01) and Pgr (p < 0.05). The present study demonstrates for the first time that E4 limited the development and progression of endometriosis in vivo.


Subject(s)
Disease Models, Animal , Endometriosis , Estetrol , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha , Animals , Endometriosis/metabolism , Endometriosis/pathology , Endometriosis/drug therapy , Female , Mice , Estetrol/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Oxidative Stress/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects , Lipid Peroxidation/drug effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics
2.
Zoology (Jena) ; 164: 126171, 2024 May.
Article in English | MEDLINE | ID: mdl-38761613

ABSTRACT

Estrogens, acting through their receptors (ERα and ERß), regulate cell turnover in the pituitary gland, influencing cell proliferation and apoptosis across various species. However, their role in pituitary processes in seasonally reproducing animals remains poorly understood. This study aims to investigate the influence of estrogens, through the expression of their specific receptors, on the apoptosis of PD cells in relation to sexual maturity, the reproductive cycle, and pregnancy in a seasonal reproductive rodent (Lagostomus maximus maximus). ERα and caspase-3-cleaved (CASP3c) immunoreactive (-ir) cells were identified through immunohistochemistry. Apoptotic cells were detected using the TUNEL technique, with quantitative analysis facilitated by image analysis software, alongside measurement of serum estradiol levels using radioimmunoassay The immunostaining pattern for ERα included nuclear (ERαn) and cytoplasmic (ERαc) staining. In male viscachas, ERα expression significantly increases from immature to adult animals, correlating with the rise in serum estradiol levels and a decrease in the percentage of apoptotic cells. During the gonadal regression period in adult males, a decrease in the number of ER-ir cells and serum levels of estradiol corresponds with an increase in the number of apoptotic cells. In females, serum levels of estradiol peaked during mid-pregnancy, coinciding with a significant decrease in the number of apoptotic cells in the PD. Simultaneously, the percentage of ERαn-ir cells reaches its maximum value during late pregnancy, indicating the need to maintain the protective action of this gonadal hormone throughout the extensive pregnancy in these rodents. Regional ERα receptor expression and apoptotic cells appear to be associated with distinct PD cell populations and their hormonal responses. Finally, elevated estradiol levels coincide with diminished apoptotic cells in the male reproductive cycle and during pregnancy, suggesting an antiapoptotic role of estradiol in this species.


Subject(s)
Apoptosis , Estrogens , Pituitary Gland , Rodentia , Animals , Female , Male , Rodentia/physiology , Estrogens/metabolism , Estrogens/blood , Pituitary Gland/metabolism , Pregnancy , Gene Expression Regulation , Estradiol/blood , Estradiol/metabolism
3.
Environ Sci Pollut Res Int ; 30(19): 55989-56002, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36913022

ABSTRACT

Lead (Pb) is a metal that can produces irreversible damage in living organisms. Some studies had reported that Pb produces histophysiological alterations in the digestive system (mainly liver) of birds; however, the effect of this metal on small intestine has not been fully examined. Additionally, little information is available on Pb disturbances in native birds of South America. The present study aimed to evaluate the effect of different Pb exposure times on blood δ-aminolevulinic acid dehydratase (δ-ALAD) activity and on the histological and morphometric characteristics of the digestive system (liver and proximal intestine) of eared doves (Zenaida auriculata). A decrease of the blood δ-ALAD activity, dilatation of blood vessels and leukocyte infiltrates in intestinal submucosa and muscular layers, and reduction of the enterocyte nuclear diameter and Lieberkühn crypts area were observed. In liver were noted steatosis, proliferation of bile ducts, dilated sinusoids, leukocyte infiltrates, and melanomacrophage centers. The portal tract area and the thickness of the portal vein wall were increased. In conclusion, the results showed that Pb produces histological and morphometric alterations on the liver and small intestine according to the exposure time, which should be considered when the dangerousness of environmental pollutants is evaluated in wild animals.


Subject(s)
Columbidae , Lead , Animals , Lead/pharmacology , Liver , South America , Intestines , Porphobilinogen Synthase
4.
Reprod Biol Endocrinol ; 20(1): 19, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35081973

ABSTRACT

BACKGROUND: Nitric oxide and GnRH are biological factors that participate in the regulation of reproductive functions. To our knowledge, there are no studies that link NO and GnRH in the sympathetic ganglia. Thus, the aim of the present work was to investigate the influence of NO on GnRH release from the coeliac ganglion and its effect on luteal regression at the end of pregnancy in the rat. METHODS: The ex vivo system composed by the coeliac ganglion, the superior ovarian nerve, and the ovary of rats on day 21 of pregnancy was incubated for 180 min with the addition, into the ganglionic compartment, of L-NG-nitro arginine methyl ester (L-NAME), a non-selective NO synthase inhibitor. The control group consisted in untreated organ systems. RESULTS: The addition of L-NAME in the coeliac ganglion compartment decreased NO as well as GnRH release from the coeliac ganglion. In the ovarian compartment, and with respect to the control group, we observed a reduced release of GnRH, NO, and noradrenaline, but an increased production of progesterone, estradiol, and expression of their limiting biosynthetic enzymes, 3ß-HSD and P450 aromatase, respectively. The inhibition of NO production by L-NAME in the coeliac ganglion compartment also reduced luteal apoptosis, lipid peroxidation, and nitrotyrosine, whereas it increased the total antioxidant capacity within the corpora lutea. CONCLUSION: Collectively, the results indicate that NO production by the coeliac ganglion modulates the physiology of the ovary and luteal regression during late pregnancy in rats.


Subject(s)
Corpus Luteum/innervation , Corpus Luteum/metabolism , Gonadotropin-Releasing Hormone/metabolism , Nitric Oxide/metabolism , Animals , Drug Interactions , Female , Ganglia, Sympathetic/drug effects , Ganglia, Sympathetic/metabolism , Gestational Age , Gonadotropin-Releasing Hormone/pharmacology , Nervous System/drug effects , Nervous System/metabolism , Neural Pathways/drug effects , Neural Pathways/metabolism , Nitric Oxide/pharmacology , Ovary/innervation , Ovary/metabolism , Pregnancy , Rats
5.
Cell Tissue Res ; 384(2): 487-498, 2021 May.
Article in English | MEDLINE | ID: mdl-33779845

ABSTRACT

The GnRH/GnRH receptor system has been found in several extrapituitary tissues, although its physiological significance has not yet been well established. Taking into account that the peripheral neural system can act as a modulator of pregnancy corpus luteum, the objective was to physiologically investigate the presence of the GnRH system in coeliac ganglion (CG) and to analyse its possible involvement in luteal regression through the superior ovarian nerve (SON) at the end of pregnancy in the rat. The integrated ex vivo CG-SON-Ovary system of rats on day 21 of pregnancy was used. Cetrorelix (CTX), a GnRH receptor antagonist, was added into the ganglionic compartment while the control systems were untreated. Ganglionic GnRH release was detected under basal conditions. Then, the CTX addition in CG increased it, which would indicate the blockade of the receptor. In turn, CTX in CG caused an increase in ovarian progesterone release. Furthermore, the luteal cells showed an increase in the expression of Hsd3b1 and a decrease in the expression of Akr1c3 (progesterone synthesis and degradation enzymes, respectively), reduced TUNEL staining according to an increase in the antioxidant defence system activity and low lipid peroxide levels. The ovarian and ganglionic nitric oxide (NO) release increased, while the luteal nitrotyrosine content, measured as nitrosative stress marker, decreased. CTX in CG decreased the ovarian noradrenaline release. The present study provides evidence that GnRH from CG may trigger neuronal signals that promote the luteal regression in late pregnancy by affecting the release of NO and noradrenaline in the ovary.


Subject(s)
Corpus Luteum/drug effects , Ganglia, Sympathetic/metabolism , Gonadotropin-Releasing Hormone/metabolism , Animals , Disease Models, Animal , Female , Pregnancy , Rats
6.
Cells ; 9(11)2020 11 13.
Article in English | MEDLINE | ID: mdl-33202705

ABSTRACT

The role of tumor necrosis factor-α (TNF-α) in shaping the tumor microenvironment is ambiguous. Consistent with its uncertain role in melanoma, TNF-α plays a dual role, either acting as a cytotoxic cytokine or favoring a tumorigenic inflammatory microenvironment. TNF-α signals via two cognate receptors, namely TNFR1 (p55) and TNFR2 (p75), which mediate divergent biological activities. Here, we analyzed the impact of TNFR1 deficiency in tumor progression in the B16.F1 melanoma model. Tumors developed in mice lacking TNFR1 (TNFR1 knock-out; KO) were smaller and displayed lower proliferation compared to their wild type (WT) counterpart. Moreover, TNFR1 KO mice showed reduced tumor angiogenesis. Although no evidence of spontaneous metastases was observed, conditioned media obtained from TNFR1 KO tumors increased tumor cell migration. Whereas the analysis of tumor-associated immune cell infiltrates showed similar frequency of total and M2-polarized tumor-associated macrophages (TAMs), the percentage of CD8+ T cells was augmented in TNFR1 KO tumors. Indeed, functional ex vivo assays demonstrated that CD8+ T cells obtained from TNFR1KO mice displayed an increased cytotoxic function. Thus, lack of TNFR1 attenuates melanoma growth by modulating tumor cell proliferation, migration, angiogenesis and CD8+ T cell accumulation and activation, suggesting that interruption of TNF-TNFR1 signaling may contribute to control tumor burden.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Melanoma, Experimental/blood supply , Melanoma, Experimental/immunology , Neovascularization, Pathologic/immunology , Receptors, Tumor Necrosis Factor, Type I/deficiency , Animals , Cell Proliferation , Lymphocyte Activation/immunology , Melanins/metabolism , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Mice, Knockout , Neoplasm Invasiveness , Receptors, Tumor Necrosis Factor, Type I/metabolism , Signal Transduction , Tumor Microenvironment/immunology
7.
Reprod Fertil Dev ; 31(11): 1707-1718, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31242958

ABSTRACT

Viscachas are native rodents of South America that present a long pregnancy of ~154 days. In this work, we analysed variations in the expression of proliferating cellular nuclear antigen, oestrogen and androgen receptors (ERα and AR) in pituitary pars distalis (PD) and pars tuberalis (PT) in relation to oestradiol and testosterone serum levels in non-pregnant and pregnant viscachas. In PD, cell proliferation increased with pregnancy and lactotrophs proliferated during mid-pregnancy (MP). ERα nuclear-immunoreactive cells (ERαn-ir) were maximal in late pregnancy and AR expression did not vary during pregnancy. In PT, cell proliferation and AR expression increased during pregnancy, but ERα expression was very scarce. The immunostaining pattern of receptors was different in PD and PT. The peak of serum oestradiol and testosterone occurred during MP. Our results suggest that cell proliferation and gonadal receptors might be differentially regulated in the pituitary by oestradiol and testosterone during viscacha pregnancy.


Subject(s)
Estrogens/metabolism , Gonadal Steroid Hormones/metabolism , Pituitary Gland, Anterior/metabolism , Pregnancy, Animal , Proliferating Cell Nuclear Antigen/metabolism , Receptors, Androgen/metabolism , Rodentia/physiology , Animals , Female , Immunohistochemistry , Pregnancy , Pregnancy, Animal/metabolism , Rodentia/metabolism
8.
J Trace Elem Med Biol ; 52: 239-246, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30732889

ABSTRACT

Cadmium (Cd) exposure has been associated with an increased risk of cardiovascular diseases. The diet is a modifiable source of protecting or damaging factors that may affect this risk. Herein we tested the hypothesis that a soybean-based diet (SBD) protects the vascular wall of the aorta against Cd-induced pro-inflammatory and pro-apoptotic effects. To test this hypothesis, we fed male Wistar rats for 60 days with a casein-based diet (CBD) or an SBD. These animals were also exposed to tap-water without (CBD-Co/SBD-Co) or with 15(CBD-15Cd/SBD-15Cd) or 100 (CBD-100Cd/SBD-100Cd) ppm of Cd. Inflammatory parameters (mRNAs and/or proteins) were measured in thoracic aorta tissue. These included inducible and endothelial nitric oxide synthases, cyclooxygenase-2, intracellular-adhesion molecule-1, and vascular cell-adhesion molecule-1. As pro-apoptotic parameters, we measured Bax and Bcl-2 mRNA/protein, as well as TUNEL positive cells in the aorta tissue. Compared to CBD-Co, inflammatory and apoptosis markers increased in the aorta with the concentration of Cd in the drinking water. These effects were not observed in either SBD-15Cd or SBD-100Cd, which were similar to CBD-Co. Cd content in serum and in aortas from animals fed CBD-Co/SBD-15Cd or CBD-Co/SBD-100Cd were similar suggesting that, if any, the effect of SBD is not due to changes in Cd bioaccumulation, but due to secondary effects linked to the composition of the dietary soybean flour. Our findings are consistent with a protective effect of an SBD against Cd-induced inflammation and apoptosis in the thoracic aorta in a rat model.


Subject(s)
Aorta, Thoracic/drug effects , Apoptosis/drug effects , Cadmium/toxicity , Diet , Glycine max/chemistry , Inflammation/chemically induced , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Cadmium/administration & dosage , Cadmium/analysis , Caseins/administration & dosage , Caseins/pharmacology , Inflammation/metabolism , Inflammation/pathology , Male , Rats , Rats, Wistar
9.
Cells Tissues Organs ; 205(4): 240-250, 2018.
Article in English | MEDLINE | ID: mdl-30212827

ABSTRACT

The pineal gland of mammals undergoes morphological and biochemical changes throughout the gestation period. In viscachas, a seasonal breeding rodent, pregnancy lasts approximately 154 days and 3 stages can be defined, i.e., early, mid, and late pregnancy. The purpose of this study is to analyze morphometric variations in the expression of S-100 protein, glial fibrillary acidic protein (GFAP), and vimentin in the interstitial cells (IC) in pregnant and nonpregnant viscachas by immunohistochemistry (IHC). We also aim to evaluate a probable relation between glandular activity and pregnancy. The immunopositive percentage area (%IA) for the studied proteins and the number of immunoreactive cells against the S-100 protein with a visible nucleus (nº IC-S-100) were analyzed. Estradiol and progesterone serum levels were also determined by RIA. Variations in the expression of the S-100 protein and GFAP, as well as changes in the nº IC-S-100 related to serum hormone levels, were found between pregnant and nonpregnant viscachas. Viscachas in mid pregnancy exhibited the highest values of %IA for the analyzed proteins, followed by females in late and early pregnancy, while the nonpregnant ones showed the lowest values for all of the groups studied. Likewise, the nº IC-S-100 also varied following the same pattern. Thus, these variations seem to indicate a direct relationship between glandular activity and gonadal hormone levels. On these grounds, we may conclude that IC undergo changes in relation to ovarian hormone levels and participate in the regulation of glandular activity during pregnancy. However, further research is necessary to elucidate this relationship.


Subject(s)
Leydig Cell Tumor/metabolism , Pineal Gland/metabolism , Rodentia/anatomy & histology , Animals , Female , Immunohistochemistry , Pineal Gland/cytology , Pregnancy
10.
Anat Rec (Hoboken) ; 300(10): 1847-1857, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28622452

ABSTRACT

The pineal gland of viscacha exhibits histophysiological variations throughout the year, with periods of maximal activity in winter and minimal activity in summer. The aim of this work is to analyze the interstitial cells (IC) in the pineal gland of male viscachas in relation to season and age. The S-100 protein, glio-fibrillary acidic protein (GFAP), and vimentin were detected in adult and immature animals by immunohistochemistry (IHC). Double-IHC was also performed. The S-100 protein was localized within both, IC nucleus and cytoplasm. GFAP was present only in the cytoplasm. Vimentin was expressed in some IC, besides endothelial cells, and perivascular spaces. In the adult males, the morphometric parameters analyzed for the S-100 protein and GFAP exhibited seasonal variations with higher values of immunopositive area percentage in winter and lower values in summer, whereas the immature ones showed the lowest values for all the adult animals studied. Colocalization of S-100 protein and GFAP was observed. The IC exhibited differential expression for the proteins studied, supporting the hypothesis of the neuroectodermal origin. The IC generate an intraglandular communication network, suggesting its participation in the glandular activity regulation processes. The results of double-IHC might indicate the presence of IC in different functional stages, probably related to the needs of the cellular microenvironment. The morphometric variations in the proteins analyzed between immature and adult viscachas probed to be more salient in the latter, suggesting a direct relationship between the expression of the S-100 protein and GFAP, and animal age. Anat Rec, 2017. © 2017 Wiley Periodicals Inc. Anat Rec, 300:1847-1857, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Aging/pathology , Pineal Gland/cytology , Rodentia/anatomy & histology , Seasons , Aging/metabolism , Animals , Biometry , Glial Fibrillary Acidic Protein/metabolism , Male , Pineal Gland/metabolism , Rodentia/metabolism , S100 Proteins/metabolism , Vimentin/metabolism
11.
Int J Endocrinol ; 2017: 7492960, 2017.
Article in English | MEDLINE | ID: mdl-29391866

ABSTRACT

The presence of pigment has been demonstrated in different nervous structures such as those of retina, substantia nigra, and locus coeruleus. These pigments have also been described in the pineal gland of different mammal species. Histochemical and ultrastructural studies of the pineal gland of female viscacha (Lagostomus maximus maximus) were performed to analyze the presence of pigmented cells under natural conditions and to evaluate a probable relation between pigment content and glandular activity during pregnancy. The following techniques were applied: hematoxylin-eosin, phosphotungstic acid-hematoxylin, Masson-Fontana silver, DOPA histochemistry, Schmorl's reaction and toluidine blue. Estradiol and progesterone serum levels were determined by RIA. The ultrastructural features of the pineal pigment granules were also analyzed. Pigment granules were observed in a random distribution, but the pigmented cells were frequently found near blood vessels. The pineal pigment was histochemically identified as melanin. Differences in the amount of pigmented cells were found between pregnant and nonpregnant viscachas. The ultrastructural analysis revealed the presence of premelanosomes and melanosomes. Estradiol and progesterone levels vary during pregnancy. In conclusion, the changes in the amount of pigment content and hormone levels may indicate that the pineal gland of female viscacha is susceptible to endocrine variations during pregnancy.

12.
Infect Immun ; 84(11): 3172-3181, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27550935

ABSTRACT

Yersinia enterocolitica evades the immune response by injecting Yersinia outer proteins (Yops) into the cytosol of host cells. YopH is a tyrosine phosphatase critical for Yersinia virulence. However, the mucosal immune mechanisms subverted by YopH during in vivo orogastric infection with Y. enterocolitica remain elusive. The results of this study revealed neutrophil recruitment to Peyer's patches (PP) after infection with a YopH-deficient mutant strain (Y. enterocolitica ΔyopH). While the Y. enterocolitica wild-type (WT) strain in PP induced the major neutrophil chemoattractant CXCL1 mRNA and protein levels, infection with the Y. enterocolitica ΔyopH mutant strain exhibited a higher expression of the CXCL1 receptor, CXCR2, in blood neutrophils, leading to efficient neutrophil recruitment to the PP. In contrast, migration of neutrophils into PP was impaired upon infection with Y. enterocolitica WT strain. In vitro infection of blood neutrophils revealed the involvement of YopH in CXCR2 expression. Depletion of neutrophils during Y. enterocolitica ΔyopH infection raised the bacterial load in PP. Moreover, the clearance of WT Y. enterocolitica was improved when an equal mixture of Y. enterocolitica WT and Y. enterocolitica ΔyopH strains was used in infecting the mice. This study indicates that Y. enterocolitica prevents early neutrophil recruitment in the intestine and that the effector protein YopH plays an important role in the immune evasion mechanism. The findings highlight the potential use of the Y. enterocolitica YopH-deficient strain as an oral vaccine carrier.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Neutrophil Infiltration/physiology , Neutrophils/cytology , Peyer's Patches/cytology , Yersinia Infections/immunology , Yersinia enterocolitica/pathogenicity , Animals , Bacterial Load , Bacterial Outer Membrane Proteins/genetics , Chemokines, CXC/metabolism , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Neutrophils/metabolism , Receptors, Chemokine/metabolism , Virulence/physiology , Yersinia Infections/metabolism , Yersinia Infections/microbiology , Yersinia enterocolitica/immunology
13.
Int J Endocrinol ; 2015: 168047, 2015.
Article in English | MEDLINE | ID: mdl-25945090

ABSTRACT

The aim of this work was to study the androgen receptors (AR) expression in pituitary pars distalis (PD) of male viscachas in relation to growth and reproductive cycle. AR were detected by immunocytochemistry and quantified by image analysis. Pituitary glands from fetus, immature, prepubertal, and adult viscachas during their reproductive cycle were used. In the fetal PD, the immunoreactivity (ir) was mainly cytoplasmic. In immature and prepubertal animals, AR-ir was cytoplasmic (ARc-ir) and nuclear (ARn-ir) in medial region. In adult animals, ARn-ir cells were numerous at caudal end. AR regionalization varied between the PD zones in relation to growth. In immature animals, the ARn-ir increased whereas the cytoplasmic expression decreased in relation to the fetal glands. The percentage of ARc-ir cells increased in prepubertal animals whereas the nuclear AR expression was predominant in adult viscachas. The AR expression changed in adults, showing minimum percentage in the gonadal regression period. The variation of nuclear AR expression was directly related with testosterone concentration. These results demonstrated variations in the immunostaining pattern, regionalization, and number of AR-ir cells throughout development, growth, and reproductive cycle, suggesting the involvement of AR in the regulation of the pituitary activity of male viscacha.

14.
Tissue Cell ; 46(5): 356-62, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25035101

ABSTRACT

In birds and mammals the metabolic response to fasting has been studied and can be characterized by three consecutive phases reflecting metabolic and physiological adjustments. An effective way to minimize energy expenditure during food scarcity is to decrease the mass of the organs. As the digestive system is metabolically expensive to maintain, the small intestine and the liver are the most affected organs. We evaluated the effects of phase III starvation on the mass of the different organs and histological parameters on house sparrows, a small non-migrant bird. In a short period of time (34 h) we observed a larger reduction in the digestive organ mass when compared to the mass of the body and non-alimentary tissues. Furthermore, the intestinal mass was proportionally more reduced than its length and nominal surface area. A reduction on the intestinal mucosal layer also resulted in a shortening of villus (length and thickness) and crypt depth. Moreover, the morphology of the enterocytes changed from cylindrical to cubical, suggesting that the surface exposed to the lumen was conserved. This may indicate an adaptive response to the moment of refeeding. The nominal surface area/body mass remained constant in both groups and several histological parameters were reduced, suggesting that starving induces the atrophy of the small intestine. However, the goblet cells were conserved after fasting indicating a protective tendency.


Subject(s)
Fasting/physiology , Intestine, Small/pathology , Sparrows/physiology , Animals , Organ Size
15.
Cells Tissues Organs ; 199(1): 73-80, 2014.
Article in English | MEDLINE | ID: mdl-24803103

ABSTRACT

Daily morphological variations have been previously described in the viscacha (Lagostomus maximus maximus) retina. The aim of this work was to determine the effects of lithium administration on the histology of retinas from this nocturnal rodent since lithium is a drug that has been shown to affect different parameters of circadian rhythms. Adult male viscachas were divided into 2 groups, injected daily with lithium chloride or vehicle for 35 days, and sacrificed at 08:00, 16:00, and 24:00 h for light and electron microscopy studies. The following morphometric parameters were analyzed: the thickness of the photoreceptor layer, the rod outer and inner segments, and the outer nuclear layer. The control group displayed a true daily cycle of photoreceptor renewal similar to that previously reported by us for (untreated) viscachas in their normal habitat. In all lithium-treated groups, we did not observe histological changes in the thickness measurement of the retinal layers. In these groups, the retinas presented ultrastructural characteristics similar to those observed in control animals sacrificed at 24:00 h. In conclusion, chronic lithium administration abolished the daily histological rhythm in the viscacha retina, probably via inhibition of the phagocytosis process in pigment epithelial cells.


Subject(s)
Lithium Chloride/pharmacology , Retina/cytology , Retina/drug effects , Rodentia/anatomy & histology , Animals , Male
16.
Reprod Fertil Dev ; 26(7): 991-1000, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23905557

ABSTRACT

The aims of the present study were to determine whether castration results in quantitative immunohistochemical changes in androgen receptors (AR), LH-immunoreactive (IR) cells and FSH-IR cells, and to analyse the colocalisation of AR and gonadotropins in the pituitary pars distalis (PD) of viscachas. Pituitaries were processed for light and electron microscopy. AR-IR, LH-IR and FSH-IR cells were detected by immunohistochemistry. In morphometric studies, the percentage of AR-IR, LH-IR, FSH-IR, LH-IR/AR-IR and FSH-IR/AR-IR cells was determined. In intact viscachas, AR were distributed throughout the PD; they were numerous at the caudal end, with intense immunostaining. LH-IR cells and FSH-IR cells were found mainly in the ventral region and at the rostral end of the PD. Approximately 45%-66% of LH-IR cells and 49%-57% of FSH-IR cells expressed AR in the different zones of the PD. In castrated viscachas, there was a significant decrease in the percentage of AR-IR, LH-IR, FSH-IR, and FSH-IR/AR-IR cells. Some pituitary cells from castrated viscachas also exhibited ultrastructural changes. These results provide morphological evidence that gonadal androgens are directly related to the immunolabelling of AR, LH and FSH. Moreover, the colocalisation of AR and FSH is most affected by castration, suggesting the existence of a subpopulation of gonadotrophs with different regulatory mechanisms for hormonal synthesis, storage and secretion.


Subject(s)
Gonadotropins, Pituitary/analysis , Orchiectomy/veterinary , Pituitary Gland, Anterior/chemistry , Receptors, Androgen/analysis , Rodentia/physiology , Animals , Cell Nucleus/chemistry , Cytoplasm/chemistry , Follicle Stimulating Hormone/analysis , Immunohistochemistry/veterinary , Luteinizing Hormone/analysis , Male , Microscopy, Electron, Transmission/veterinary , Pituitary Gland, Anterior/ultrastructure
17.
Anat Rec (Hoboken) ; 296(7): 1089-95, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23630194

ABSTRACT

Animals living in nontropical climates modify their physiology and behavior to adapt to seasonal environmental changes. Part of this adaptation involves the release of catecholamine from sympathetic nerve endings and the adrenal medulla, which play a major role in regulating energy balance. The aim of this work was to investigate whether adult male viscachas in their natural habitat exhibits structural changes in the adrenal medulla during the annual seasonal cycle. In August-September, chromaffin granules revealed ultrastructural changes suggestive of piecemeal degranulation. Quantitative morphometric analysis by transmission electron microscopy showed a significantly lower percentage of resting chromaffin granules and a higher percentage of altered granules and empty containers in August-September (late winter) compared to February-March (late summer), suggesting an increased secretory process of catecholamines in August-September. The mechanism of piecemeal degranulation might amplify this process, encouraging the adaptive response to winter environmental conditions. Tissue levels of epinephrine, norepinephrine, and dopamine (analyzed by high-performance liquid chromatography) changed throughout the year, reaching maximum values in February-March and minimum values in August-September. These results demonstrate morphological and biochemical seasonal variations of the adrenal medulla, suggesting that epinephrine might promote energy mobilization, which allow the Lagostomus to cope with adverse environmental conditions and thus to survive during winter season.


Subject(s)
Adrenal Medulla/metabolism , Catecholamines/metabolism , Chromaffin Granules/metabolism , Rodentia/metabolism , Seasons , Adaptation, Physiological , Adrenal Medulla/ultrastructure , Animals , Cell Degranulation , Chromaffin Granules/ultrastructure , Chromatography, High Pressure Liquid , Dopamine/metabolism , Energy Metabolism , Epinephrine/metabolism , Male , Microscopy, Electron, Transmission , Norepinephrine/metabolism , Rain , Sunlight , Temperature , Time Factors
18.
Tissue Cell ; 44(6): 351-7, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22749373

ABSTRACT

The morphological characteristics and percentage of the cellular associations between gonadotrophs (LH- and FSH-secreting cells) and other cellular types were studied in pituitary pars distalis of adult male viscachas (Lagostomus maximus maximus) by double immunohistochemistry using specific antibodies to LH, FSH, PRL, GH, ACTH, TSH and S-100 protein (by folliculostellate cells; FSC), during long and short photoperiods. Bihormonal gonadotrophs were observed in ventro-medial and dorsal regions, interspersed between monohormonal gonadotrophs, and their number increased in short photoperiod. LH- and FSH-gonadotrophs were found around lactotrophs, enclosed by somatotrophs in the dorsal region, and associated with irregular corticotrophs. Gonadotrophs and thyrotrophs were associated along blood vessels and follicular structures. The cytoplasmic prolongations of FSC were in contact with both gonadotrophs. The percentage of LH-FSH, LH-ACTH, LH-FSC, FSH-LH, FSH-PRL, FSH-GH, FSH-ACTH, FSH-TSH and FSH-FSC associations decreased, whereas LH-PRL increased in short as compared to long photoperiod. The most abundant associations were LH-GH and LH-TSH during long photoperiod, but LH-GH and LH-PRL during short photoperiod. FSH-GH and FSH-PRL were the most numerous associations, and LH-FSC and FSH-FSC were the less abundant ones in both photoperiods. These results provide the morphological evidence for specific cellular associations between gonadotrophs and other cellular types of viscacha pituitary.


Subject(s)
Gonadotrophs/cytology , Photoperiod , Reproduction/physiology , Rodentia/physiology , Animals , Female , Follicle Stimulating Hormone/metabolism , Gonadotrophs/metabolism , Immunohistochemistry , Luteinizing Hormone/metabolism , Male
19.
Article in English | MEDLINE | ID: mdl-22613787

ABSTRACT

Starvation is a condition that often affects animals in nature. The gastrointestinal tract is the organ system displaying the most rapid and dramatic changes in response to nutrient deprivation. To date, little is known about starvation phases and effects on the organ morphology and digestive function in small passerine birds. In this study, we determined the phases of starvation and examined the effect of final stage of starvation in the organ morphology and, intestinal histology and enzymatic function in the small intestine. Our results show the three phases of the classical model of fasting in a shorter period of time. The mass of heart, pancreas, stomach, small intestine and liver of long-term fasted birds was reduced between 20 and 47%. The mass decrease in small intestine was correlated with reduction in small intestinal histology: perimeter, mucosal thickness, villus height and width. In contrast, the enzyme activity of sucrase-isomaltase and aminopeptidase-N in enterocytes, all expressed per µg of protein, was higher in long-term fasted birds than fed animals. This suggest that, while autophagy of digestive organs is induced by starvation, consistent with phenotypic plasticity, the activity of sucrase-isomaltase and aminopeptidase-N remains high, probably as an anticipatory strategy to optimize digestion at re-feeding time.


Subject(s)
Fasting , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/metabolism , Sparrows/anatomy & histology , Sparrows/metabolism , Animals
20.
Zoology (Jena) ; 113(6): 361-72, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20970970

ABSTRACT

The neuroendocrine hypothalamic-pituitary axis undergoes morphological and biochemical changes throughout gestation. In viscacha, pregnancy lasts approximately 154 days, and three stages can be described: early, mid- and late pregnancy. The aim of this work was to study the pituitary LH-gonadotrophs, FSH-gonadotrophs, somatotrophs, corticotrophs and thyrotrophs of non-pregnant and pregnant adult viscachas by immunohistochemistry and morphometric analysis. Immunopositive percentage area (%IA), cell percentage in the pars distalis (%PDC), number of cells per reference area (n°cell/RA), and major cellular (MCD) and nuclear (ND) diameters were analyzed. The different cell populations showed a well-defined morphology, immunolabeling patterns and regionalization in the pars distalis (PD). In the early pregnancy of animals the morphometric analysis demonstrated that %IA, %PDC and n°cell/RA increased in the FSH-gonadotrophs and decreased in the somatotrophs in relation to non-pregnant animals. In mid-pregnancy, there was an increase in %IA, %PDC, and n°cell/RA of LH-gonadotrophs, FSH-gonadotrophs, somatotrophs, and thyrotrophs. The MCD of LH-gonadotrophs and FSH-gonadotrophs increased. In late pregnancy, the %IA, %PDC and n°cell/RA of LH-gonadotrophs, FSH-gonadotrophs, somatotrophs and corticotrophs decreased whereas the values of the thyrotrophs remained constant. The MCD of LH-gonadotrophs, FSH-gonadotrophs and corticotrophs decreased. No significant changes were observed in the ND of the studied cell types. In conclusion, this work provides evidence for histological and morphometric changes in the different cell types of the pituitary PD in viscachas during pregnancy, probably according to the requirements of this physiological stage.


Subject(s)
Chinchilla/anatomy & histology , Immunohistochemistry , Pituitary Gland/anatomy & histology , Animals , Chinchilla/metabolism , Female , Follicle Stimulating Hormone/metabolism , Immunohistochemistry/veterinary , Luteinizing Hormone/metabolism , Pituitary Gland/cytology , Pituitary Gland/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...