Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 343: 125989, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34695693

ABSTRACT

An integrated biorefinery has been developed using winery wastes (grape pomace-GP, stalks-GS, wine lees-WL). Bacterial cellulose was produced from GP extracted free sugars. Grape-seed oil and polyphenols were extracted from GP. Experimental design was employed to optimize lignin removal (50.8%) from mixtures of remaining GP solids and GS via NaOH (1.19% w/v) treatment at 70°C for 30 min. Delignification liquid contained condensed tannins with 76% Stiasny number. Enzymatic hydrolysis produced a sugar-rich hydrolysate (40.2 g/L sugars). Ethanol, antioxidants, tartaric acid and nutrient-rich hydrolysate were produced from WL. The crude hydrolysates were used in fed-batch Actinobacillus succinogenes cultures for 37.2 g/L succinic acid production. The biorefinery produces 42.65 g bacterial cellulose, 24.3 g oil, 40.3 g phenolic-rich extract with 1.41 Antioxidant Activity Index, 80.2 g ethanol, 624.8 g crude tannin extract, 20.03 g tartaric acid and 157.8 g succinic acid from 1 kg of each waste stream.


Subject(s)
Actinobacillus , Succinic Acid , Cellulose , Fermentation , Hydrolysis
2.
Bioresour Technol ; 348: 126295, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34800640

ABSTRACT

This study presents techno-economic evaluation and life cycle assessment of a novel biorefinery using the three main waste streams generated by wineries for the production of bio-based succinic acid (SA), crude phenolic-rich extract, grape-seed oil, calcium tartrate and crude tannin-rich extract. Process design has been employed for the estimation of material and energy balances and the sizing of unit operations. The Minimum Selling Price of succinic acid production within a winery waste biorefinery ranges from $1.23-2.76/kgSA depending on the market price and the potential end-uses of the extracted fractions. The Global Warming Potential and the Abiotic Depletion Potential of winery waste valorisation through the proposed biorefinery are 1.47 kg CO2-eq per kg dry waste and 25.2 MJ per kg dry waste, respectively. Biorefining of winery waste could lead to the development of a sustainable and novel bioeconomy business model with new market opportunities and efficient waste management.


Subject(s)
Succinic Acid , Waste Management , Animals , Biofuels , Life Cycle Stages , Phenols
3.
Animals (Basel) ; 11(11)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34827771

ABSTRACT

The valorization of vinification byproducts portrays a promising bioprocess for the enrichment of animals' diet with bioactive compounds, such as polyphenols, which could regulate the immune response. Therefore, the impact of dietary grounded grape pomace (GGP), wine lees extract (WYC), and grape stem extract (PE) on the relative transcript level of immune related genes of broiler chickens were examined. Two hundred forty, one-day-old as hatched (male/female) chicks (Ross 308) were allocated to four dietary groups, with four replicate pens each with 15 birds. Birds were fed either a basal diet (CON) or the basal diet supplemented with 2.5% GGP, or 0.2% WYC, or 0.1% PE for 42 d. The relative expression of immune-related genes was investigated using a real-time PCR platform. The mRNA levels of Toll-like Receptor 4 (TLR4) were downregulated (p = 0.039) in the liver of broilers fed the GGP-containing diet compared to the CON, while in the spleen of PE-fed broilers, TLR4 was significantly upregulated (p = 0.043). The mRNA levels of interleukin 8 (IL8) tended to upregulate (p = 0.099) in the bursa of Fabricius and were significantly increased (p = 0.036) in the spleen of broilers fed the PE diet. Vinification byproducts depict a promising sustainable source of polyphenols for the poultry feed industry, but more research is needed under field conditions.

4.
Antioxidants (Basel) ; 10(8)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34439498

ABSTRACT

Vinification by-products display great potential for utilization as feed additives rich in antioxidant compounds. Thus, the effect of dietary ground grape pomace (GGP), wine lees extract rich in yeast cell walls (WYC), and grape stem extracts (PE) on the relative expression of several genes involved in liver oxidative mechanisms and the oxidative status of the blood and breast muscle of broiler chickens was investigated. In total, 240 one-day-old as hatched chicks (Ross 308) were assigned to four treatments, with four replicate pens and 15 birds in each pen. Birds were fed either a basal diet (CON) or a basal diet supplemented with 25 g/kg GGP, or 2 g/kg WYC, or 1 g starch including 100 mg pure stem extract/kg (PE) for 42 days. The polyphenolic content of vinification by-products was determined using an LC-MS/MS library indicating as prevailing compounds procyanidin B1 and B2, gallic acid, caftaric acid, (+)-catechin, quercetin, and trans-resveratrol. Body weight and feed consumption were not significantly affected. The relative transcript level of GPX1 and SOD1 tended to increase in the liver of WYC-fed broilers, while NOX2 tended to decrease in the PE group. SOD activity in blood plasma was significantly increased in WYC and PE compared to the CON group. The total antioxidant capacity measured with FRAP assay showed significantly higher values in the breast muscle of PE-fed broilers, while the malondialdehyde concentration was significantly decreased in both WYC- and PE-fed broilers compared to the CON group. The exploitation of vinification by-products as feed additives appears to be a promising strategy to improve waste valorization and supply animals with bioactive molecules capable of improving animals' oxidative status and products' oxidative stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...