Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Sci Total Environ ; 913: 169770, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38176553

ABSTRACT

Groundwater is a vital source of freshwater, serving ecological, environmental, and societal needs. In regions with springs as a predominant source, such as the Northern Apennines (Italy), resilience of these springs to climate-induced recharge changes is crucial for water supply and ecosystem preservation. In this study, Nadìa Spring in the Northern Apennines is examined through an unprecedented array of multidisciplinary analyses to understand its resilience and unique characteristics. The Nadìa Spring's exceptional response, characterized by a sustained base flow even in the face of drought, is attributed to a combination of factors including a substantial groundwater reservoir, a complex network of faults/fractures, slope instabilities, and karst dissolution. The investigation reveals a dual porosity system in the aquifer, consisting of fast-flow conduits and a diffuse fracture network. While fast-flow conduits contribute to rapid responses during high-flow conditions, the diffuse system becomes predominant during low-flow periods. This dual porosity structure helps the spring maintain a consistent base flow in the face of climate-induced recharge fluctuations. The study shows that Nadìa Spring exhibits remarkable resilience to year-to-year variations in recharge, as evidenced by stable minimum discharge values. While the spring has undergone a decline in discharge over the past century due to long-term climate change, it is becoming more resilient over interdecadal timescales due to transition to a diffuse drainage system that mitigates the impact of reduced recharge. The availability of a century-long spring discharge monitoring was a crucial piece of information for understanding the spring's discharge response and drawing conclusions about its long-term resilience to recharge fluctuations. Continuing long-term monitoring and research in the future will be essential to validate and expand upon these findings in the context of changing climatic conditions. This research serves as a model for assessing strategic groundwater discharge points in geological settings similar to the Northern Apennines.

2.
J Environ Manage ; 319: 115776, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35982574

ABSTRACT

Chlorinated ethene (CE) contaminants are widespread in groundwater, and the occurrence of vinyl chloride (VC), among others, is a well-known issue due to its mobility, persistence, and carcinogenicity. Human exposure to VC may occur through inhalation after soil vapor intrusion into buildings at sites with shallow underground contamination. Soil vapor intrusion risk is traditionally assessed through indoor air and sub-slab sampling (direct evidence) or soil gas and groundwater surveys (indirect evidence). Phytoscreening (sampling and analysis of tree trunk matrices) was proven as a cost-effective alternative technique to indirectly detect shallow underground contamination by higher chlorinated ethenes and subsequent vapor intrusion risk. However, the technique has appeared barely capable to screen for the lower chlorinated VC, likely due to its fugacity and aerobic bio-degradability, with only one literature record to date showing successful detection in trees. We applied phytoscreening at two sites with severe CE contamination nearby residential buildings caused by illegal dumping of chlorinated pitches from petrochemical productions. The two sites show variable amounts of VC in the shallow groundwater (1e2 to 1e4 µg/L), posing potential sanitary risk issues. Former soil gas surveys did not detect VC in the vadose zone. At both sites, we sampled trunk micro-cores and trunk gas from poplar trees close to contaminated piezometers in different seasons. VC was detected in several instances, disproving the shared literature assumption of the inefficacy of phytoscreening towards this compound. Factors influencing the detectability of VC and other CEs in trees were analyzed through linear regressions. Two different conceptual models were proposed to explain the effective uptake of VC by trees at the two sites, i.e., direct uptake of contaminated groundwater at the first site and uptake of VC from an anoxic vadose zone at the second site. In planta reductive dechlorination of CEs is not expected based on current literature knowledge. Thus, the detection of VC in trunks would indicate its occurrence in the shallow underground, suggesting higher screening effectiveness of phytoscreening compared to soil gas; this has implications for indirect vapor intrusion risk assessment.


Subject(s)
Groundwater , Vinyl Chloride , Water Pollutants, Chemical , Biodegradation, Environmental , Gases/analysis , Groundwater/chemistry , Humans , Soil , Trees/chemistry , Vinyl Chloride/analysis , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 817: 153005, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35026257

ABSTRACT

Applications and acceptance of phytoscreening, i.e., the use of trees as screening tools for underground contamination, are still limited in many countries due to the lack of awareness of application policies, the intrinsic qualitative nature of the technique, and the paucity of critical analyses on available data. To date, the conditions influencing the effectiveness of the technique have been descriptively discussed, yet rarely quantified. This review will contribute to filling this knowledge gap, shedding light on the most suitable approaches to apply phytoscreening. The focus was placed specifically on chlorinated ethene compounds since they are among the main organic contaminants in groundwater and have been the most studied in the field of phytoscreening. Chlorinated ethenes' behavior and biodegradation potential largely depend on their physicochemical properties as well as the hydrogeological features of the system in which they migrate. Besides, their fate and transport in surface ecosystems are still poorly understood. Here, phytoscreening data from sites contaminated by chlorinated ethenes were extracted from relevant literature to form a global-scale database. Data were statistically analyzed to identify the major drivers of variability in tree-cores concentration. Correlation between tree-core and groundwater concentration was quantified through Spearman's rank coefficients, whilst detectability potential was determined based on tree-cores showing non-detection of contaminants. The influence on such parameters of factors like contaminant properties, hydrogeology, tree features, and sampling/analytical protocols was assessed. Results suggest that factors controlling plant uptake and contaminant phytovolatilization regulate correlation and detectability, respectively. Conditions increasing the correlation (e.g., sites with shallow and permeable aquifers) are recommended for phytoscreening applications aimed at mapping and monitoring contaminant plumes, whereas conditions increasing detectability (e.g., sampling tree-cores near ground level) are recommended to preliminary screen underground contamination in poorly investigated areas.


Subject(s)
Groundwater , Water Pollutants, Chemical , Biodegradation, Environmental , Ecosystem , Ethylenes , Groundwater/chemistry , Trees/chemistry , Water Pollutants, Chemical/analysis
4.
Pain ; 163(2): e349-e356, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34393202

ABSTRACT

ABSTRACT: Neuro-orthopedic disorders are common in patients with disorders of consciousness (DOC) and can lead to potential pain. However, the patients' inability to communicate makes pain detection and management very challenging for clinicians. In this crossover randomized double-blind placebo-controlled study, we investigated the effects of an analgesic treatment on the presence of nociception-related behaviors. At baseline, the Nociception Coma Scale-Revised (NCS-R) was performed in 3 conditions: a non-noxious stimulation, a noxious stimulation, and during a physiotherapy session. Patients with a NCS-R total score during physiotherapy equal or above the score observed after the noxious stimulation could participate to the clinical trial, as well as patients with a score above 5. They received an analgesic treatment and a placebo on 2 consecutive days in a randomized order followed by an assessment with the NCS-R. Of the 18 patients, 15 displayed signs of potential pain during physiotherapy. Patients showed higher NCS-R scores during physiotherapy compared with the other conditions, suggesting that mobilizations were potentially painful. Of these 15 patients, 10 met the criteria to participate in the placebo-controlled trial. We did not find any effect of analgesic treatment on the NCS-R scores. This study highlights that physiotherapy may be potentially painful for patients with DOC, while analgesic treatments did not reduced NCS-R scores. Therefore, careful monitoring with appropriate assessment and treatment before and during mobilization should become a priority in clinical settings. Future studies should focus on the development of assessment tools sensitive to analgesic dosage to manage pain in DOC.


Subject(s)
Consciousness , Nociception , Analgesics/therapeutic use , Consciousness Disorders/drug therapy , Consciousness Disorders/etiology , Double-Blind Method , Humans , Nociception/physiology , Pain Measurement , Physical Therapy Modalities
5.
Front Neurol ; 12: 687197, 2021.
Article in English | MEDLINE | ID: mdl-34566837

ABSTRACT

Background and Objectives: Persistent post-concussive symptoms (PCS) consist of neurologic and psychological complaints persisting after a mild traumatic brain injury (mTBI). It affects up to 50% of mTBI patients, may cause long-term disability, and reduce patients' quality of life. The aim of this review was to examine the possible use of different neuroimaging modalities in PCS. Methods: Articles from Pubmed database were screened to extract studies that investigated the relationship between any neuroimaging features and symptoms of PCS. Descriptive statistics were applied to report the results. Results: A total of 80 out of 939 papers were included in the final review. Ten examined conventional MRI (30% positive finding), 24 examined diffusion weighted imaging (54.17% positive finding), 23 examined functional MRI (82.61% positive finding), nine examined electro(magneto)encephalography (77.78% positive finding), and 14 examined other techniques (71% positive finding). Conclusion: MRI was the most widely used technique, while functional techniques seem to be the most sensitive tools to evaluate PCS. The common functional patterns associated with symptoms of PCS were a decreased anti-correlation between the default mode network and the task positive network and reduced brain activity in specific areas (most often in the prefrontal cortex). Significance: Our findings highlight the importance to use functional approaches which demonstrated a functional alteration in brain connectivity and activity in most studies assessing PCS.

6.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972438

ABSTRACT

Groundwater pollution threatens human and ecosystem health in many regions around the globe. Fast flow to the groundwater through focused recharge is known to transmit short-lived pollutants into carbonate aquifers, endangering the quality of groundwaters where one quarter of the world's population lives. However, the large-scale impact of such focused recharge on groundwater quality remains poorly understood. Here, we apply a continental-scale model to quantify the risk of groundwater contamination by degradable pollutants through focused recharge in the carbonate rock regions of Europe, North Africa, and the Middle East. We show that focused recharge is the primary reason for widespread rapid transport of contaminants to the groundwater. Where it occurs, the concentration of pollutants in groundwater recharge that have not yet degraded increases from <1% to around 20 to 50% of their concentrations during infiltration. Assuming realistic application rates, our simulations show that degradable pollutants like glyphosate can exceed their permissible concentrations by 3 to 19 times when reaching the groundwater. Our results are supported by independent estimates of young water fractions at 78 carbonate rock springs over Europe and a dataset of observed glyphosate concentrations in the groundwater. They imply that in times of continuing and increasing industrial and agricultural productivity, focused recharge may result in an underestimated and widespread risk to usable groundwater volumes.


Subject(s)
Environmental Monitoring , Glycine/analogs & derivatives , Groundwater/chemistry , Models, Statistical , Water Pollutants, Chemical/isolation & purification , Africa, Northern , Computer Simulation , Europe , Glycine/isolation & purification , Humans , Middle East , Water Movements , Water Supply , Glyphosate
7.
Environ Sci Pollut Res Int ; 28(18): 23017-23035, 2021 May.
Article in English | MEDLINE | ID: mdl-33438126

ABSTRACT

In an aquifer-aquitard system in the subsoil of the city of Ferrara (Emilia-Romagna region, northern Italy) highly contaminated with chlorinated aliphatic toxic organics such as trichloroethylene (TCE) and tetrachloroethylene (PCE), a strong microbial-dependent dechlorination activity takes place during migration of contaminants through shallow organic-rich layers with peat intercalations. The in situ microbial degradation of chlorinated ethenes, formerly inferred by the utilization of contaminant concentration profiles and Compound-Specific Isotope Analysis (CSIA), was here assessed using Illumina sequencing of V4 hypervariable region of 16S rRNA gene and by clone library analysis of dehalogenase metabolic genes. Taxon-specific investigation of the microbial communities catalyzing the chlorination process revealed the presence of not only dehalogenating genera such as Dehalococcoides and Dehalobacter but also of numerous other groups of non-dehalogenating bacteria and archaea thriving on diverse metabolisms such as hydrolysis and fermentation of complex organic matter, acidogenesis, acetogenesis, and methanogenesis, which can indirectly support the reductive dechlorination process. Besides, the diversity of genes encoding some reductive dehalogenases was also analyzed. Geochemical and 16S rRNA and RDH gene analyses, as a whole, provided insights into the microbial community complexity and the distribution of potential dechlorinators. Based on the data obtained, a possible network of metabolic interactions has been hypothesized to obtain an effective reductive dechlorination process.


Subject(s)
Groundwater , Microbiota , Trichloroethylene , Water Pollutants, Chemical , Biodegradation, Environmental , Italy , RNA, Ribosomal, 16S/genetics , Soil , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 263: 127983, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32841878

ABSTRACT

The seaweed food has always been important in Asia, but recently increased in the Western diet. Superfood known for health benefits and rich in essential elements, can also accumulate high contents of heavy metals and iodine from the environment, becoming a health hazard. In particular for iodine, an appropriate labelling of seaweed is needed to warn the consumer of the potential risks. The aim of the study was to analyze the content of 20 heavy metals in seaweeds, distributed in Italy, by ICP-MS, also determining iodine and arsenic (total and inorganic fraction). A total of 72 samples of European and Asian seaweed of 8 genera were analyzed and the results correlated the content of heavy metals to genus, geographical origin and type of sample; 8.33% of the products lacked in the label of the indications of allergens, while 9.72% had irregularities in the label language. The highest concentration of elements was found in the Rhodophyta. The Aluminum level was the highest in the mixed seaweed (165.39 mg/kg) and for the Cadmium in the Asian seaweed (1.16 mg/kg). The amounts of Iron, Zinc and Magnesium, was highest in the Asian seaweed. The values of Arsenic (total and inorganic contents) were compared with the limits: 2.78% exceeds France and USA limits for inorganic, while higher content of total was found in Phaeophyta, which also showed the highest Iodine content (6770.80 mg/kg) that can be dangerous if not reported correctly in the label.


Subject(s)
Environmental Monitoring , Food Contamination/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Arsenic/analysis , Asia , Cadmium/analysis , France , Italy , Minerals , Phaeophyceae , Rhodophyta , Seaweed , Vegetables
9.
Water Res ; 171: 115388, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31877474

ABSTRACT

This study investigates for the first time the integrity of multiple stacked aquitards with different degrees of contaminant degradation. Aquitard integrity was assessed in a contaminated, multi-layered, alluvial aquifer-aquitard system (Ferrara, northern Italy). The system was contaminated by mixed organic contaminants of industrial origin (mostly chlorinated ethenes) that were illegally disposed in an urban dump four to five decades ago. High spatial resolution profiles of hydraulic head, geochemistry and chlorinated hydrocarbon concentrations were determined through the multi-layered system via discrete interval sampling of continuous cores and multilevel groundwater sampling, at three locations aligned along a transect adjacent to the buried waste to a maximum depth of 53 m below the water table. The profiles revealed that the two shallow aquitards had low integrity with respect to impeding downward migration of dense non-aqueous phase liquid (DNAPL), and provided little protection to the underlying aquifers against DNAPL contamination due to preferential pathways through imperceptible fractures and/or permeable micro-beds. However, both aquitards inhibited downward DNAPL migration to some extent due to DNAPL retention along its flow paths and accumulation at lower permeability interfaces, with decreasing peak concentrations at the top of successively deeper aquitard units. Moreover, both aquitards enhanced contaminant biodegradation due to the occurrence of organic rich sub-layers, influencing the contaminant plume composition, mobility and fate in the underlying and overlying aquifers. The deepest aquitard showed evidence of DNAPL accumulation at the top and slow diffusion-dominated transport consistent with 40 years of transport, suggesting higher integrity compared to the two shallower aquitards. However, the occurrence of micro-fractures and/or discontinuities in the aquitard upgradient under the dump (source) is the most likely explanation for contamination of the deepest aquifer. Analytical 1-D simulations of the diffusion profiles in the deepest aquitard revealed that DNAPL contamination down to the top of this aquitard occurred with minimal delay after DNAPL waste disposal began. The results highlight the necessity of high-resolution vertical profiling for assessing the presence of imperceptible features relevant to DNAPL migration and integrity of individual aquitards affecting organic contaminant source zone mass and phase distributions over decades.


Subject(s)
Groundwater , Hydrocarbons, Chlorinated , Trichloroethylene , Water Pollutants, Chemical , Italy
10.
Sci Total Environ ; 640-641: 153-162, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29859433

ABSTRACT

Tetrachloroethene and trichloroethene are typical by-products of the industrial production of chloromethanes. These by-products are known as "chlorinated pitches" and were often dumped in un-contained waste disposal sites causing groundwater contaminations. Previous research showed that a strongly depleted stable carbon isotope signature characterizes chlorinated compounds associated with chlorinated pitches whereas manufactured commercial compounds have more enriched carbon isotope ratios. The findings were restricted to a single case study and one element (i.e. carbon). This paper presents a multi-element Compound-Specific Stable Isotope Analysis (CSIA, including carbon, chlorine and hydrogen) of chlorinated aliphatic contaminants originated from chlorinated pitches at two sites with different hydrogeology and different producers of chloromethanes. The results show strongly depleted carbon signatures at both sites whereas the chlorine and the hydrogen signatures are comparable to those presented in the literature for manufactured commercial compounds. Multi-element CSIA allowed the identification of sources and site-specific processes affecting chloroethene transformation in groundwater as a result of emergency remediation measures. CSIA turned out to be an effective forensic tool to address the liability for the contamination, leading to a conviction for the crimes of unintentional aggravated public water supply poisoning and environmental disaster.

11.
J Contam Hydrol ; 192: 129-139, 2016 09.
Article in English | MEDLINE | ID: mdl-27451056

ABSTRACT

The occurrence of vinyl chloride (VC) is often a main concern at sites contaminated with chlorinated solvents due to its high degree of toxicity and carcinogenicity. VC occurrence in aquifers is most often related to the degradation of higher chlorinated ethenes or ethanes and it is generally detected in plumes along with parent contaminants. However, specific combination of stratigraphic, hydrogeologic and geochemical conditions can enhance the degradation of parents and lead to the formation of plumes almost entirely composed of VC (i.e. VC-only plumes). This paper investigates the causes of VC-only plumes in the aquifers below the city of Ferrara (northern Italy) by combining multiple lines of evidence. The City of Ferrara is located on an alluvial lowland, built by the River Po, and is made up of alternating unconsolidated sandy aquifer and silt-clay aquitard deposits of fluvial origin. This region has been strongly impacted by prior industrial activities, with the occurrence of chlorinated compounds at several sites. VC-only plumes with uncertain source location were found at two contaminated sites. The source zone of a third plume composed of chloroethenes from PCE to VC was investigated for high resolution depositional facies architecture and contaminant distribution (contaminant concentration and Compound Specific Isotope Analysis - CSIA). The investigation suggested that degradation of PCE and TCE takes place during contaminant migration through peat-rich (swamp) layers related to the Holocene transgression, which locally act as a "reactor" for stimulating degradation with the accumulation of VC in the strongly reducing environment of the peat. Regional-scale stratigraphic architecture showed the ubiquitous occurrence of swamp layers at distinct stratigraphic levels in the investigated system and their apparent linkage to the in situ creation of the VC-only plumes.


Subject(s)
Groundwater/analysis , Vinyl Chloride/analysis , Water Pollutants, Chemical/analysis , Cities , Environmental Monitoring , Groundwater/chemistry , Halogenation , Italy , Soil
12.
Sci Total Environ ; 568: 624-637, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-26953141

ABSTRACT

Springs are biodiversity hotspots and unique habitats that are threatened, especially by water overdraft. Here we review knowledge on ambient-temperature (non-geothermal) freshwater springs that achieve sufficient oversaturation for CaCO3 -by physical CO2 degassing and activity of photoautotrophs- to deposit limestone, locally resulting in scenic carbonate structures: Limestone-Precipitating Springs (LPS). The most characteristic organisms in these springs are those that contribute to carbonate precipitation, e.g.: the mosses Palustriella and Eucladium, the crenophilous desmid Oocardium stratum, and cyanobacteria (e.g., Rivularia). These organisms appear to be sensitive to phosphorus pollution. Invertebrate diversity is modest, and highest in pools with an aquatic-terrestrial interface. Internationally, comprehensive legislation for spring protection is still relatively scarce. Where available, it covers all spring types. The situation in Europe is peculiar: the only widespread spring type included in the EU Habitat Directive is LPS, mainly because of landscape aesthetics. To support LPS inventorying and management to meet conservation-legislation requirements we developed a general conceptual model to predict where LPS are more likely to occur. The model is based on the pre-requisites for LPS: an aquifer lithology that enables build-up of high bicarbonate and Ca(2+) to sustain CaCO3 oversaturation after spring emergence, combined with intense groundwater percolation especially along structural discontinuities (e.g., fault zones, joints, schistosity), and a proper hydrogeological structure of the discharging area. We validated this model by means of the LPS information system for the Emilia-Romagna Region (northern Italy). The main threats to LPS are water diversion, nutrient enrichment, and lack of awareness by non-specialized persons and administrators. We discuss an emblematic case study to provide management suggestions. The present review is devoted to LPS but the output of intense ecological research in Central Europe during the past decades has clearly shown that effective conservation legislation should be urgently extended to comprise all types of spring habitats.


Subject(s)
Calcium Carbonate/analysis , Conservation of Water Resources/methods , Environmental Monitoring/methods , Natural Springs/chemistry , Aquatic Organisms/classification , Biodiversity , Calcium Carbonate/chemistry , Chemical Precipitation , Models, Theoretical
13.
J Neuroimmunol ; 283: 64-9, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26004159

ABSTRACT

Cerebrospinal fluid (CSF) CXCL13 was shown to correlate with markers of intrathecal inflammation and CSF oligoclonal IgM bands (IgMOB) have been associated with a more severe Multiple Sclerosis (MS) course. We correlated CSF CXCL13 levels with clinical, MRI and CSF parameters, including CSF IgMOB, in 110 Clinically Isolated Syndrome (CIS) patients. CSF CXCL13 levels correlated with CSF cell count, total protein, IgG Index and with the presence of CSF IgGOB and IgMOB. CSF CXCL13 levels ≥15.4 pg/ml showed a good positive predictive value and specificity for a MS diagnosis and for a clinical relapse within one year from onset.


Subject(s)
Chemokine CXCL13/cerebrospinal fluid , Multiple Sclerosis/cerebrospinal fluid , Oligoclonal Bands/cerebrospinal fluid , Adult , Brain/pathology , Chemokine CXCL13/blood , Disease-Free Survival , Female , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Magnetic Resonance Imaging , Male , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/diagnosis , Multiple Sclerosis/immunology , Oligoclonal Bands/blood , Predictive Value of Tests , Recurrence , Risk Factors , Spinal Cord/pathology , Young Adult
14.
Front Chem ; 2: 32, 2014.
Article in English | MEDLINE | ID: mdl-24918100

ABSTRACT

The European Groundwater Directive could be improved by limiting the scopes of the Annexes I and II to the manmade and natural substances, respectively, and by defining a common monitoring protocol. The changes in the European landuse patterns, in particular the urban sprawl phenomena, obscure the distinction between the point and diffuse sources of contamination. In the future more importance will be given to the household contamination. Moreover, the agricultural environment could be used for developing new conceptual models related to the pharmaceuticals.

15.
Talanta ; 85(4): 2182-8, 2011 Sep 30.
Article in English | MEDLINE | ID: mdl-21872076

ABSTRACT

A non-chromatographic separation and preconcentration method for Se species determination based on the use of an on-line ionic liquid (IL) dispersive microextraction system coupled to electrothermal atomic absorption spectrometry (ETAAS) is proposed. Retention and separation of the IL phase was achieved with a Florisil(®)-packed microcolumn after dispersive liquid-liquid microextraction (DLLME) with tetradecyl(trihexyl)phosphonium chloride IL (CYPHOS(®) IL 101). Selenite [Se(IV)] species was selectively separated by forming Se-ammonium pyrrolidine dithiocarbamate (Se-APDC) complex followed by extraction with CYPHOS(®) IL 101. The methodology was highly selective towards Se(IV), while selenate [Se(VI)] was reduced and then indirectly determined. Several factors influencing the efficiency of the preconcentration technique, such as APDC concentration, sample volume, extractant phase volume, type of eluent, elution flow rate, etc., have been investigated in detail. The limit of detection (LOD) was 15 ng L(-1) and the relative standard deviation (RSD) for 10 replicates at 0.5 µg L(-1) Se concentration was 5.1%, calculated with peak heights. The calibration graph was linear and a correlation coefficient of 0.9993 was achieved. The method was successfully employed for Se speciation studies in garlic extracts and water samples.


Subject(s)
Garlic/chemistry , Ionic Liquids/chemistry , Liquid Phase Microextraction/methods , Selenium Compounds/analysis , Selenium Compounds/isolation & purification , Spectrophotometry, Atomic/methods , Water/chemistry , Hydrochloric Acid/chemistry , Indicators and Reagents/chemistry , Online Systems , Organophosphorus Compounds/chemistry , Pyrrolidines/chemistry , Thiocarbamates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...