Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139264

ABSTRACT

Although several (chemotherapeutic) protocols to treat acute myeloid leukemia (AML) are available, high rates of relapses in successfully treated patients occur. Strategies to stabilize remissions are greatly needed. The combination of the (clinically approved) immune-modulatory compounds Granulocyte-Macrophage-Colony-Stimulating-Factor (GM-CSF) and Prostaglandine E1 (PGE-1) (Kit-M) converts myeloid blasts into dendritic cells of leukemic origin (DCleu). After stimulation with DCleu ex vivo, leukemia-specific antileukemic immune cells are activated. Therefore, Kit-M treatment may be an attractive immunotherapeutic tool to treat patients with myeloid leukemia. Kit-M-mediated antileukemic effects on whole bone marrow (WBM) were evaluated and compared to whole blood (WB) to evaluate the potential effects of Kit-M on both compartments. WB and WBM samples from 17 AML patients at first diagnosis, in persisting disease and at relapse after allogeneic stem cell transplantation (SCT) were treated in parallel with Kit-M to generate DC/DCleu. Untreated samples served as controls. After a mixed lymphocyte culture enriched with patients' T cells (MLC), the leukemia-specific antileukemic effects were assessed through the degranulation- (CD107a+ T cells), the intracellular IFNγ production- and the cytotoxicity fluorolysis assay. Quantification of cell subtypes was performed via flow cytometry. In both WB and WBM significantly higher frequencies of (mature) DCleu were generated without induction of blast proliferation in Kit-M-treated samples compared to control. After MLC with Kit-M-treated vs. not pretreated WB or WBM, frequencies of (leukemia-specific) immunoreactive cells (e.g., non-naive, effector-, memory-, CD3+ß7+ T cells, NK- cells) were (significantly) increased, whereas leukemia-specific regulatory T cells (Treg, CD152+ T cells) were (significantly) decreased. The cytotoxicity fluorolysis assay showed a significantly improved blast lysis in Kit-M-treated WB and WBM compared to control. A parallel comparison of WB and WBM samples revealed no significant differences in frequencies of DCleu, (leukemia-specific) immunoreactive cells and achieved antileukemic processes. Kit-M was shown to have comparable effects on WB and WBM samples regarding the generation of DCleu and activation of (antileukemic) immune cells after MLC. This was true for samples before or after SCT. In summary, a potential Kit-M in vivo treatment could lead to antileukemic effects in WB as well as WBM in vivo and to stabilization of the disease or remission in patients before or after SCT. A clinical trial is currently being planned.


Subject(s)
Alprostadil , Leukemia, Myeloid, Acute , Humans , Alprostadil/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Dendritic Cells , Bone Marrow , Lymphocyte Activation , T-Lymphocytes, Regulatory , Granulocytes , Macrophages
2.
Bone Marrow Transplant ; 58(8): 907-915, 2023 08.
Article in English | MEDLINE | ID: mdl-37160941

ABSTRACT

For patients with acute myeloid and lymphoblastic leukaemia (AML/ALL) lacking a matched sibling or unrelated donor, haploidentical stem cell transplantation (HAPLO-SCT) is increasingly used. However, available data on the treatment of relapse after HAPLO-SCT, including feasibility and efficacy of a second HAPLO-SCT (HAPLO-SCT2), is scarce. Hence, adults with AML/ALL, that had undergone HAPLO-SCT2 without ex-vivo manipulation after haematologic relapse from HAPLO-SCT1 were selected for a retrospective registry analysis. Eighty-two patients (AML, n = 63, ALL, n = 19, median follow-up: 33 months) were identified. Engraftment rate was 87%. At day +180, cumulative incidences of acute GvHD II-IV°/chronic GvHD were 23.9%/22.6%, respectively. Two-year overall survival/leukaemia-free survival (OS/LFS) were 34.3%/25.4%; 2-year non-relapse mortality (NRM) and relapse incidence (RI) were 17.6% and 57%. Leukaemia was the most frequent cause of death. Separated by disease, 2-year OS/LFS/NRM/RI were 28.7%/22.3%/16.2%/61.6% in AML, and 55.3%/38.4%/23.5%/38.2% in ALL patients. In a risk-factor analysis among patients with AML, stage at HAPLO-SCT1 and HAPLO-SCT2, and interval from HAPLO-SCT1 to relapse significantly influenced outcome. Our data demonstrate that HAPLO-SCT2 is a viable option in acute leukaemia relapse after HAPLO-SCT1. Engraftment, toxicity, risk factors and long-term outcome are comparable to data reported after allo-SCT2 in a matched donor setting.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Adult , Humans , Retrospective Studies , Bone Marrow , Neoplasm Recurrence, Local , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/complications , Hematopoietic Stem Cell Transplantation/adverse effects , Acute Disease , Graft vs Host Disease/etiology , Unrelated Donors , Transplantation Conditioning/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...