Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 20(1): 43, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36879270

ABSTRACT

Zika virus (ZIKV) infection is a major public health threat, making the study of its biology a matter of great importance. By analyzing the viral-host protein interactions, new drug targets may be proposed. In this work, we showed that human cytoplasmic dynein-1 (Dyn) interacts with the envelope protein (E) of ZIKV. Biochemical evidence indicates that the E protein and the dimerization domain of the heavy chain of Dyn binds directly without dynactin or any cargo adaptor. Analysis of this interactions in infected Vero cells by proximity ligation assay suggest that the E-Dyn interaction is dynamic and finely tuned along the replication cycle. Altogether, our results suggest new steps in the replication cycle of the ZIKV for virion transport and indicate a suitable molecular target to modulate infection by ZIKV.


Subject(s)
Zika Virus Infection , Zika Virus , Chlorocebus aethiops , Humans , Animals , Cytoplasmic Dyneins , Vero Cells , Biological Transport
2.
J Physiol Biochem ; 76(1): 13-35, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31925679

ABSTRACT

Diabetes mellitus (DM) leads to microvascular, macrovascular, and neurological complications. Less is understood about the mechanisms of this disease that give rise to weak bones. The many molecular mechanisms proposed to explain the damage caused by chronic hyperglycemia are organ and tissue dependent. Since all the different treatments for DM involve therapeutic activity combined with side effects and each patient represents a unique condition, there is no generalized therapy. The alterations stemming from hyperglycemia affect metabolism, osmotic pressure, oxidative stress, and inflammation. In part, hemodynamic modifications are linked to the osmotic potential of the excess of carbohydrates implicated in the disease. The change in osmotic balance increases as the disease progresses because hyperglycemia becomes chronic. The aim of the current contribution is to provide an updated overview of the molecular mechanisms that participate in the development and treatment of diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Animals , Bone Density/drug effects , Cell Line , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Disease Progression , Humans , Hyperglycemia/drug therapy , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacology , Inflammation/drug therapy , Osmotic Pressure/drug effects , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...