Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 6(1): 173, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788328

ABSTRACT

The bioengineerined and whole matured human brain organoids stand as highly valuable three-dimensional in vitro brain-mimetic models to recapitulate in vivo brain development, neurodevelopmental and neurodegenerative diseases. Various instructive signals affecting multiple biological processes including morphogenesis, developmental stages, cell fate transitions, cell migration, stem cell function and immune responses have been employed for generation of physiologically functional cerebral organoids. However, the current approaches for maturation require improvement for highly harvestable and functional cerebral organoids with reduced batch-to-batch variabilities. Here, we demonstrate two different engineering approaches, the rotating cell culture system (RCCS) microgravity bioreactor and a newly designed microfluidic platform (µ-platform) to improve harvestability, reproducibility and the survival of high-quality cerebral organoids and compare with those of traditional spinner and shaker systems. RCCS and µ-platform organoids have reached ideal sizes, approximately 95% harvestability, prolonged culture time with Ki-67 + /CD31 + /ß-catenin+ proliferative, adhesive and endothelial-like cells and exhibited enriched cellular diversity (abundant neural/glial/ endothelial cell population), structural brain morphogenesis, further functional neuronal identities (glutamate secreting glutamatergic, GABAergic and hippocampal neurons) and synaptogenesis (presynaptic-postsynaptic interaction) during whole human brain development. Both organoids expressed CD11b + /IBA1 + microglia and MBP + /OLIG2 + oligodendrocytes at high levels as of day 60. RCCS and µ-platform organoids showing high levels of physiological fidelity a high level of physiological fidelity can serve as functional preclinical models to test new therapeutic regimens for neurological diseases and benefit from multiplexing.


Subject(s)
Neurons , Organoids , Humans , Reproducibility of Results , Neurogenesis , Cell Differentiation
2.
Tissue Cell ; 74: 101712, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34920234

ABSTRACT

Fabrication of immunocompatible tissue constructs for bone-cartilage defect regeneration is of prime importance. In this study, a double layer hydrogel was successfully synthesized, where alginate/polyacrylamide were formulated to represent cartilage layer (5-10 % (w/w) total polymer ratio) and laponite XLS (2-5-8% (w/w))/alginate/polyacrylamide formed bone layer. Hydrogels were dried by supercritical CO2 at 100 and 200 bar, 45 °C, 5 g/min CO2 flow rate for 2 h. Constructs were treated with collagen, then cellularized and embedded in cell-laden GelMA to mimic the cellular microenvironment. The optimum weight ratio of alginate/polyacrylamide:laponite XLS was 10:5 based on mechanical strength test results. The constructs yielded high porosity (91.50 m2/g) and mesoporous structure, owing to the diffusivity of CO2 at 200 bar (0.49 × 10-7 m2/s). Constructs were then treated with collagen to increase cell adhesion and ATDC5 cells were seeded in the cartilage layer, whereas hFOB cells to the bone layer. About 10-15 % higher cell viability was attained. The porous structure of the construct allowed infiltration of macrophages, promoted polarization and positively affected the behavior of macrophages, yielding a decrease in M1 markers, whereas an increase in M2 on day 4. The formulated tissue constructs would be of value in tissue engineering applications.


Subject(s)
Acrylic Resins/chemistry , Alginates/chemistry , Bone and Bones/immunology , Carbon Dioxide/chemistry , Hydrogels/chemistry , Macrophages/immunology , Silicates/chemistry , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Bone and Bones/cytology , Cell Line, Tumor , Humans , Macrophages/cytology , Mice , Porosity , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...